
Question 1.1

How do you decide which integer type to use? 

If you might need large values (above 32,767 or below -32,767), use long. Otherwise, if space is
very important (i.e. if there are large arrays or many structures), use short. Otherwise, use int. If
well-defined overflow characteristics are important and negative values are not, or if you want to
steer  clear  of  sign-extension  problems  when  manipulating  bits  or  bytes,  use  one  of  the
corresponding unsigned types. (Beware when mixing signed and unsigned values in expressions,
though.) 

Although character types (especially unsigned char) can be used as ``tiny'' integers, doing so is
sometimes more trouble than it's worth, due to unpredictable sign extension and increased code
size. (Using unsigned char can help; see question 12.1 for a related problem.) 

A similar space/time tradeoff applies when deciding between float and double. None of the above
rules apply if the address of a variable is taken and must have a particular type. 

If for some reason you need to declare something with an exact size (usually the only good reason
for doing so is when attempting to conform to some externally-imposed storage layout, but see
question 20.5), be sure to encapsulate the choice behind an appropriate typedef. 

References: K&R1 Sec. 2.2 p. 34 
K&R2 Sec. 2.2 p. 36, Sec. A4.2 pp. 195-6, Sec. B11 p. 257 
ANSI Sec. 2.2.4.2.1, Sec. 3.1.2.5 
ISO Sec. 5.2.4.2.1, Sec. 6.1.2.5 
H&S Secs. 5.1,5.2 pp. 110-114 

Question 1.4

What should the 64-bit type on new, 64-bit machines be? 

Some vendors of C products for 64-bit machines support 64-bit long ints. Others fear that too
much existing code is written to assume that ints and longs are the same size, or that one or the
other  of  them  is  exactly  32  bits,  and  introduce  a  new,  nonstandard,  64-bit  long  long  (or
__longlong) type instead. 

Programmers interested in writing portable code should therefore insulate their 64-bit type needs
behind appropriate typedefs. Vendors who feel compelled to introduce a new, longer integral type
should advertise it as being ``at least 64 bits'' (which is truly new, a type traditional C does not
have), and not ``exactly 64 bits.'' 

References: ANSI Sec. F.5.6 
ISO Sec. G.5.6 

Question 1.7

What's the best way to declare and define global variables? 

First, though there can be many declarations (and in many translation units) of a single ``global''
(strictly speaking, ``external'') variable or function, there must be exactly one definition.  (The
definition is the declaration that actually allocates space, and provides an initialization value, if
any.) The best arrangement is to place each definition in some relevant .c file, with an external



declaration in a header (``.h'') file, which is #included wherever the declaration is needed. The .c
file containing the definition should also #include the same header file, so that the compiler can
check that the definition matches the declarations. 

This rule promotes a high degree of portability: it is consistent with the requirements of the ANSI
C Standard, and is also consistent with most pre-ANSI compilers and linkers. (Unix compilers
and linkers typically use a ``common model'' which allows multiple definitions, as long as at most
one is initialized; this behavior is mentioned as a ``common extension'' by the ANSI Standard, no
pun  intended.  A  few  very  odd  systems  may  require  an  explicit  initializer  to  distinguish  a
definition from an external declaration.) 

It is possible to use preprocessor tricks to arrange that a line like 
        DEFINE(int, i);
need  only be  entered  once  in  one  header  file,  and  turned  into  a  definition  or  a  declaration
depending on the setting of some macro, but it's not clear if this is worth the trouble. 

It's especially important to put global declarations in header files if you want the compiler to
catch inconsistent  declarations  for you. In particular,  never  place a prototype for an external
function in a .c file: it wouldn't generally be checked for consistency with the definition, and an
incompatible prototype is worse than useless. 

See also questions 10.6 and 18.8. 

References: K&R1 Sec. 4.5 pp. 76-7 
K&R2 Sec. 4.4 pp. 80-1 
ANSI Sec. 3.1.2.2, Sec. 3.7, Sec. 3.7.2, Sec. F.5.11 
ISO Sec. 6.1.2.2, Sec. 6.7, Sec. 6.7.2, Sec. G.5.11 
Rationale Sec. 3.1.2.2 
H&S Sec. 4.8 pp. 101-104, Sec. 9.2.3 p. 267 
CT&P Sec. 4.2 pp. 54-56 

Question 1.11

What does extern mean in a function declaration? 

It can be used as a stylistic hint to indicate that the function's definition is probably in another
source file, but there is no formal difference between 
        extern int f();
and 
        int f();
References: ANSI Sec. 3.1.2.2, Sec. 3.5.1 
ISO Sec. 6.1.2.2, Sec. 6.5.1 
Rationale Sec. 3.1.2.2 
H&S Secs. 4.3,4.3.1 pp. 75-6 

Question 1.12

What's the auto keyword good for? 

Nothing; it's archaic. See also question 20.37. 

References: K&R1 Sec. A8.1 p. 193 
ANSI Sec. 3.1.2.4, Sec. 3.5.1 
ISO Sec. 6.1.2.4, Sec. 6.5.1 



H&S Sec. 4.3 p. 75, Sec. 4.3.1 p. 76 

Question 1.14

I can't seem to define a linked list successfully. I tried 
        typedef struct {
                char *item;
                NODEPTR next;
        } *NODEPTR;
but the compiler gave me error messages. Can't a structure in C contain a pointer to itself? 

Structures  in  C  can  certainly contain  pointers  to  themselves;  the  discussion  and example  in
section 6.5 of K&R make this clear. The problem with the NODEPTR example is that the typedef
has not been defined at the point where the next field is declared. To fix this code, first give the
structure  a  tag  (``struct  node'').  Then,  declare  the  next  field  as  a  simple  struct  node  *,  or
disentangle the typedef declaration from the structure definition, or both. One corrected version
would be 
        struct node {
                char *item;
                struct node *next;
        };
        typedef struct node *NODEPTR;
and there are at least three other equivalently correct ways of arranging it. 

A  similar  problem,  with  a  similar  solution,  can  arise  when  attempting  to  declare  a  pair  of
typedef'ed mutually referential structures. 

See also question 2.1. 

References: K&R1 Sec. 6.5 p. 101 
K&R2 Sec. 6.5 p. 139 
ANSI Sec. 3.5.2, Sec. 3.5.2.3, esp. examples 
ISO Sec. 6.5.2, Sec. 6.5.2.3 
H&S Sec. 5.6.1 pp. 132-3 

Question 1.21

How do I declare an array of N pointers to functions returning pointers to functions returning
pointers to characters? 

The first part of this question can be answered in at least three ways: 

1. char *(*(*a[N])())(); 

2. Build the declaration up incrementally, using typedefs: 
        typedef char *pc;       /* pointer to char */
        typedef pc fpc();       /* function returning pointer to char */
        typedef fpc *pfpc;      /* pointer to above */
        typedef pfpc fpfpc();   /* function returning... */
        typedef fpfpc *pfpfpc;  /* pointer to... */
        pfpfpc a[N];            /* array of... */

3. Use the cdecl program, which turns English into C and vice versa: 
        cdecl> declare a as array of pointer to function returning
                 pointer to function returning pointer to char
        char *(*(*a[])())()



cdecl can also explain complicated declarations, help with casts, and indicate which set of
parentheses the arguments go in (for complicated function definitions, like the one above).
Versions of cdecl are in volume 14 of comp.sources.unix (see question 18.16) and K&R2.

Any good book on C should explain how to read these complicated C declarations ``inside out'' to
understand them (``declaration mimics use''). 

The pointer-to-function declarations in the examples above have not  included parameter type
information. When the parameters have complicated types, declarations can really get messy.
(Modern versions of cdecl can help here, too.) 

References: K&R2 Sec. 5.12 p. 122 
ANSI Sec. 3.5ff (esp. Sec. 3.5.4) 
ISO Sec. 6.5ff (esp. Sec. 6.5.4) 
H&S Sec. 4.5 pp. 85-92, Sec. 5.10.1 pp. 149-50 

Question 1.22

How can I declare a function that can return a pointer to a function of the same type? I'm building
a state machine with one function for each state, each of which returns a pointer to the function
for the next state. But I can't find a way to declare the functions. 

You can't quite do it directly. Either have the function return a generic function pointer, with
some judicious casts to adjust the types as the pointers are passed around; or have it return a
structure containing only a pointer to a function returning that structure. 

Question 1.25

My compiler is complaining about an invalid redeclaration of a function, but I only define it once
and call it once. 

Functions which are called without a declaration in scope (perhaps because the first call precedes
the function's definition) are assumed to be declared as returning int (and without any argument
type information), leading to discrepancies if the function is later declared or defined otherwise.
Non-int functions must be declared before they are called. 

Another possible source of this problem is that the function has the same name as another one
declared in some header file. 

See also questions 11.3 and 15.1. 

References: K&R1 Sec. 4.2 p. 70 
K&R2 Sec. 4.2 p. 72 
ANSI Sec. 3.3.2.2 
ISO Sec. 6.3.2.2 
H&S Sec. 4.7 p. 101 

Question 1.30

What can I safely assume about the initial values of variables which are not explicitly initialized?
If global variables start out as ``zero,'' is that good enough for null pointers and floating-point
zeroes? 



Variables with static duration (that is, those declared outside of functions, and those declared
with the storage class static), are guaranteed initialized (just once, at program startup) to zero, as
if the programmer had typed ``= 0''. Therefore, such variables are initialized to the null pointer (of
the correct type; see also section 5) if they are pointers, and to 0.0 if they are floating-point. 

Variables with automatic duration (i.e. local variables without the static storage class) start out
containing garbage, unless they are explicitly initialized. (Nothing useful can be predicted about
the garbage.) 

Dynamically-allocated memory obtained with malloc and realloc is also likely to contain garbage,
and must be initialized by the calling program, as appropriate. Memory obtained with calloc is
all-bits-0, but this is not necessarily useful for pointer or floating-point values (see question 7.31,
and section 5). 

References: K&R1 Sec. 4.9 pp. 82-4 
K&R2 Sec. 4.9 pp. 85-86 
ANSI Sec. 3.5.7, Sec. 4.10.3.1, Sec. 4.10.5.3 
ISO Sec. 6.5.7, Sec. 7.10.3.1, Sec. 7.10.5.3 
H&S Sec. 4.2.8 pp. 72-3, Sec. 4.6 pp. 92-3, Sec. 4.6.2 pp. 94-5, Sec. 4.6.3 p. 96, Sec. 16.1 p. 386 

Question 1.31

This code, straight out of a book, isn't compiling: 
f()
{
        char a[] = "Hello, world!";
}

Perhaps  you  have  a  pre-ANSI  compiler,  which  doesn't  allow  initialization  of  ``automatic
aggregates'' (i.e. non-static local arrays, structures, and unions). As a workaround, you can make
the array global or static (if you won't need a fresh copy during any subsequent calls), or replace it
with a pointer (if the array won't be written to). (You can always initialize local char * variables
to point to string literals, but see question 1.32.) If neither of these conditions hold, you'll have to
initialize the array by hand with strcpy when f is called. See also question 11.29. 

Question 1.32

What is the difference between these initializations? 
char a[] = "string literal";
char *p  = "string literal";
My program crashes if I try to assign a new value to p[i]. 

A string literal  can be used in two slightly different  ways. As an array initializer  (as  in  the
declaration of char a[]), it specifies the initial values of the characters in that array. Anywhere
else,  it  turns  into  an  unnamed,  static  array of  characters,  which  may be  stored  in  read-only
memory, which is why you can't safely modify it. In an expression context, the array is converted
at once to a pointer, as usual (see section 6), so the second declaration initializes p to point to the
unnamed array's first element. 

(For compiling old code, some compilers have a switch controlling whether strings are writable
or not.) 

See also questions 1.31, 6.1, 6.2, and 6.8. 

References: K&R2 Sec. 5.5 p. 104 



ANSI Sec. 3.1.4, Sec. 3.5.7 
ISO Sec. 6.1.4, Sec. 6.5.7 
Rationale Sec. 3.1.4 
H&S Sec. 2.7.4 pp. 31-2 

Question 1.34

I finally figured out the syntax for declaring pointers to functions, but now how do I initialize
one? 

Use something like 
extern int func();
int (*fp)() = func;
When the name of a function appears in an expression like this, it ``decays'' into a pointer (that is,
it has its address implicitly taken), much as an array name does. 

An  explicit  declaration  for  the  function  is  normally needed,  since  implicit  external  function
declaration does not happen in this case (because the function name in the initialization is not part
of a function call). 

See also question 4.12. 

Question 2.1

What's the difference between these two declarations? 
        struct x1 { ... };
        typedef struct { ... } x2;

The first form declares a structure tag; the second declares a typedef. The main difference is that
the second declaration is of a slightly more abstract type--its users don't necessarily know that it
is a structure, and the keyword struct is not used when declaring instances of it. 

Question 2.2

Why doesn't 
struct x { ... };
x thestruct;
work? 

C is not C++. Typedef names are not automatically generated for structure tags. See also question
2.1. 

Question 2.3

Can a structure contain a pointer to itself? 

Most certainly. See question 1.14. 



Question 2.4

What's the best way of implementing opaque (abstract) data types in C? 

One  good  way  is  for  clients  to  use  structure  pointers  (perhaps  additionally  hidden  behind
typedefs) which point to structure types which are not publicly defined. 

Question 2.6

I came across some code that declared a structure like this: 
struct name {
        int namelen;
        char namestr[1];
};
and then did some tricky allocation to make the namestr array act like it had several elements. Is
this legal or portable? 

This technique is popular, although Dennis Ritchie has called it ``unwarranted chumminess with
the C implementation.'' An official interpretation has deemed that it is not strictly conforming
with the C Standard.  (A thorough treatment of the arguments surrounding the legality of the
technique  is  beyond  the  scope  of  this  list.)  It  does  seem  to  be  portable  to  all  known
implementations. (Compilers which check array bounds carefully might issue warnings.) 

Another possibility is to declare the variable-size element very large, rather than very small; in
the case of the above example: 
        ...
        char namestr[MAXSIZE];
        ...
where MAXSIZE is  larger than any name which  will  be  stored.  However,  it  looks like this
technique is disallowed by a strict interpretation of the Standard as well. 

References: Rationale Sec. 3.5.4.2 

Question 2.7

I heard that structures could be assigned to variables and passed to and from functions, but K&R1
says not. 

What  K&R1  said  was  that  the  restrictions  on  structure  operations  would  be  lifted  in  a
forthcoming version of the compiler,  and in fact  structure assignment and passing were fully
functional in Ritchie's compiler even as K&R1 was being published. Although a few early C
compilers lacked these operations, all modern compilers support them, and they are part of the
ANSI C standard, so there should be no reluctance to use them. [footnote]

(Note that when a structure is assigned, passed, or returned, the copying is done monolithically;
anything pointed to by any pointer fields is not copied.) 

References: K&R1 Sec. 6.2 p. 121 
K&R2 Sec. 6.2 p. 129 
ANSI Sec. 3.1.2.5, Sec. 3.2.2.1, Sec. 3.3.16 
ISO Sec. 6.1.2.5, Sec. 6.2.2.1, Sec. 6.3.16 
H&S Sec. 5.6.2 p. 133 



Question 2.8

Why can't you compare structures? 

There  is  no  single,  good  way  for  a  compiler  to  implement  structure  comparison  which  is
consistent with C's low-level flavor. A simple byte-by-byte comparison could founder on random
bits present in unused ``holes'' in the structure (such padding is used to keep the alignment of later
fields  correct;  see  question  2.12).  A  field-by-field  comparison  might  require  unacceptable
amounts of repetitive code for large structures. 

If you need to compare two structures, you'll have to write your own function to do so, field by
field. 

References: K&R2 Sec. 6.2 p. 129 
ANSI Sec. 4.11.4.1 footnote 136 
Rationale Sec. 3.3.9 
H&S Sec. 5.6.2 p. 133 

Question 2.9

How are structure passing and returning implemented? 

When structures are passed as arguments to functions, the entire structure is typically pushed on
the stack, using as many words as are required. (Programmers often choose to use pointers to
structures instead, precisely to avoid this overhead.) Some compilers merely pass a pointer to the
structure, though they may have to make a local copy to preserve pass-by-value semantics. 

Structures  are  often  returned  from functions  in  a  location  pointed  to  by an  extra,  compiler-
supplied ``hidden'' argument to the function. Some older compilers used a special, static location
for structure returns, although this made structure-valued functions non-reentrant, which ANSI C
disallows. 

References: ANSI Sec. 2.2.3 
ISO Sec. 5.2.3 

Question 2.10

How can I pass constant values to functions which accept structure arguments? 

C has  no way of  generating anonymous structure values.  You will  have to  use a  temporary
structure variable or a little structure-building function; see question 14.11 for an example. (gcc
provides structure constants as an extension, and the mechanism will probably be added to a
future revision of the C Standard.) See also question 4.10. 

Question 2.11

How can I read/write structures from/to data files? 

It is relatively straightforward to write a structure out using fwrite: 
        fwrite(&somestruct, sizeof somestruct, 1, fp);



and a corresponding fread invocation can read it back in. (Under pre-ANSI C, a (char *) cast on
the  first  argument  is  required.  What's  important  is  that  fwrite  receive  a  byte  pointer,  not  a
structure pointer.) However, data files so written will not be portable (see questions 2.12 and
20.5). Note also that if the structure contains any pointers, only the pointer values will be written,
and they are most  unlikely to be valid when read back in.  Finally,  note that  for  widespread
portability you must use the "b" flag when fopening the files; see question 12.38. 

A more portable solution, though it's a bit more work initially, is to write a pair of functions for
writing and reading a structure, field-by-field, in a portable (perhaps even human-readable) way. 

References: H&S Sec. 15.13 p. 381 

Question 2.12

My compiler is leaving holes in structures, which is wasting space and preventing ``binary'' I/O to
external data files. Can I turn off the padding, or otherwise control the alignment of structure
fields? 

Your  compiler  may provide  an  extension  to  give  you this  control  (perhaps  a  #pragma;  see
question 11.20), but there is no standard method. 

See also question 20.5. 

References: K&R2 Sec. 6.4 p. 138 
H&S Sec. 5.6.4 p. 135 

Question 2.13

Why does sizeof report a larger size than I expect for a structure type, as if there were padding at
the end? 

Structures  may have  this  padding  (as  well  as  internal  padding),  if  necessary,  to  ensure  that
alignment properties will be preserved when an array of contiguous structures is allocated. Even
when the structure is not part of an array, the end padding remains, so that sizeof can always
return a consistent size. See question 2.12. 

References: H&S Sec. 5.6.7 pp. 139-40 

Question 2.14

How can I determine the byte offset of a field within a structure? 

ANSI C defines the offsetof() macro, which should be used if available; see <stddef.h>. If you
don't have it, one possible implementation is 
        #define offsetof(type, mem) ((size_t) \
                ((char *)&((type *)0)->mem - (char *)(type *)0))
This implementation is not 100% portable; some compilers may legitimately refuse to accept it. 

See question 2.15 for a usage hint. 

References: ANSI Sec. 4.1.5 
ISO Sec. 7.1.6 
Rationale Sec. 3.5.4.2 
H&S Sec. 11.1 pp. 292-3 



Question 2.15

How can I access structure fields by name at run time? 

Build a table of names and offsets, using the offsetof() macro. The offset of field b in struct a is 
        offsetb = offsetof(struct a, b)
If structp is a pointer to an instance of this structure, and field b is an int (with offset as computed
above), b's value can be set indirectly with 
        *(int *)((char *)structp + offsetb) = value;

Question 2.18

This program works correctly, but it dumps core after it finishes. Why? 
        struct list {
                char *item;
                struct list *next;
        }
        /* Here is the main program. */
        main(argc, argv)
        { ... }

A missing semicolon causes main to be declared as returning a structure. (The connection is hard
to  see  because  of  the  intervening  comment.)  Since  structure-valued  functions  are  usually
implemented by adding a hidden return pointer (see question 2.9), the generated code for main()
tries to accept three arguments, although only two are passed (in this case, by the C start-up
code). See also questions 10.9 and 16.4. 

References: CT&P Sec. 2.3 pp. 21-2 

Question 2.20

Can I initialize unions? 

ANSI Standard C allows an initializer for the first member of a union. There is no standard way
of initializing any other member (nor, under a pre-ANSI compiler, is there generally any way of
initializing a union at all). 

References: K&R2 Sec. 6.8 pp. 148-9 
ANSI Sec. 3.5.7 
ISO Sec. 6.5.7 
H&S Sec. 4.6.7 p. 100 

Question 2.22

What is the difference between an enumeration and a set of preprocessor #defines? 



At  the  present  time,  there  is  little  difference.  Although  many  people  might  have  wished
otherwise, the C Standard says that enumerations may be freely intermixed with other integral
types, without errors. (If such intermixing were disallowed without explicit casts, judicious use of
enumerations could catch certain programming errors.) 

Some advantages of enumerations are that the numeric values are automatically assigned, that a
debugger may be able to display the symbolic values when enumeration variables are examined,
and  that  they  obey  block  scope.  (A  compiler  may  also  generate  nonfatal  warnings  when
enumerations and integers are indiscriminately mixed, since doing so can still be considered bad
style even though it is not strictly illegal.) A disadvantage is that the programmer has little control
over those nonfatal warnings; some programmers also resent not having control over the sizes of
enumeration variables. 

References: K&R2 Sec. 2.3 p. 39, Sec. A4.2 p. 196 
ANSI Sec. 3.1.2.5, Sec. 3.5.2, Sec. 3.5.2.2, Appendix E 
ISO Sec. 6.1.2.5, Sec. 6.5.2, Sec. 6.5.2.2, Annex F 
H&S Sec. 5.5 pp. 127-9, Sec. 5.11.2 p. 153 

Question 2.24

Is there an easy way to print enumeration values symbolically? 

No. You can write a little function to map an enumeration constant to a string. (If all you're
worried about is debugging, a good debugger should automatically print enumeration constants
symbolically.) 

Question 3.1

Why doesn't this code: 
a[i] = i++;
work? 

The  subexpression  i++  causes  a  side  effect--it  modifies  i's  value--which  leads  to  undefined
behavior since i is also referenced elsewhere in the same expression. (Note that although the
language in K&R suggests that the behavior of this expression is unspecified, the C Standard
makes the stronger statement that it is undefined--see question 11.33.) 

References: K&R1 Sec. 2.12 
K&R2 Sec. 2.12 
ANSI Sec. 3.3 
ISO Sec. 6.3 

Question 3.2

Under my compiler, the code 
int i = 7;
printf("%d\n", i++ * i++);
prints 49. Regardless of the order of evaluation, shouldn't it print 56? 

Although the postincrement and postdecrement operators ++ and -- perform their operations after
yielding the former value, the implication of ``after'' is often misunderstood. It is not guaranteed



that an increment or decrement is performed immediately after giving up the previous value and
before any other part of the expression is evaluated. It is merely guaranteed that the update will be
performed sometime before the expression is considered ``finished'' (before the next ``sequence
point,''  in  ANSI  C's  terminology;  see  question  3.8).  In  the  example,  the  compiler  chose  to
multiply the previous value by itself and to perform both increments afterwards. 

The  behavior  of  code  which  contains  multiple,  ambiguous  side  effects  has  always  been
undefined. (Loosely speaking, by ``multiple, ambiguous side effects'' we mean any combination
of ++, --, =, +=, -=, etc. in a single expression which causes the same object either to be modified
twice or modified and then inspected. This is a rough definition; see question 3.8 for a precise
one, and question 11.33 for the meaning of ``undefined.'') Don't even try to find out how your
compiler implements such things (contrary to the ill-advised exercises in many C textbooks); as
K&R  wisely  point  out,  ``if  you  don't  know  how  they  are  done  on  various  machines,  that
innocence may help to protect you.'' 

References: K&R1 Sec. 2.12 p. 50 
K&R2 Sec. 2.12 p. 54 
ANSI Sec. 3.3 
ISO Sec. 6.3 
CT&P Sec. 3.7 p. 47 
PCS Sec. 9.5 pp. 120-1 

Question 3.3

I've experimented with the code 
int i = 3;
i = i++;
on several compilers. Some gave i the value 3, some gave 4, but one gave 7. I know the behavior
is undefined, but how could it give 7? 

Undefined behavior means anything can happen. See questions 3.9 and 11.33. (Also, note that
neither i++ nor ++i is the same as i+1. If you want to increment i, use i=i+1 or i++ or ++i, not
some combination. See also question 3.12.) 

Question 3.4

Can I use explicit parentheses to force the order of evaluation I want? Even if I don't, doesn't
precedence dictate it? 

Not in general. 

Operator precedence and explicit parentheses impose only a partial ordering on the evaluation of
an expression. In the expression 
        f() + g() * h()
although we know that the multiplication will  happen before the addition,  there is no telling
which of the three functions will be called first. 

When you need to ensure the order of subexpression evaluation, you may need to use explicit
temporary variables and separate statements. 

References: K&R1 Sec. 2.12 p. 49, Sec. A.7 p. 185 
K&R2 Sec. 2.12 pp. 52-3, Sec. A.7 p. 200 



Question 3.5

But what about the && and || operators? 
I see code like ``while((c = getchar()) != EOF && c != '\n')'' ... 

There  is  a  special  exception  for  those  operators  (as  well  as  the  ?:  operator):  left-to-right
evaluation is guaranteed (as is an intermediate sequence point, see question 3.8). Any book on C
should make this clear. 

References: K&R1 Sec. 2.6 p. 38, Secs. A7.11-12 pp. 190-1 
K&R2 Sec. 2.6 p. 41, Secs. A7.14-15 pp. 207-8 
ANSI Sec. 3.3.13, Sec. 3.3.14, Sec. 3.3.15 
ISO Sec. 6.3.13, Sec. 6.3.14, Sec. 6.3.15 
H&S Sec. 7.7 pp. 217-8, Sec. 7.8 pp. 218-20, Sec. 7.12.1 p. 229 
CT&P Sec. 3.7 pp. 46-7 

Question 3.8

How can I understand these complex expressions? What's a ``sequence point''? 

A sequence point is the point (at the end of a full expression, or at the ||, &&, ?:,  or comma
operators, or just before a function call) at which the dust has settled and all side effects are
guaranteed to be complete. The ANSI/ISO C Standard states that 

Between the previous and next sequence point an object shall have its stored value
modified at  most  once by the evaluation of an expression.  Furthermore, the prior
value shall be accessed only to determine the value to be stored. 

The second sentence can be difficult to understand. It says that if an object is written to within a
full expression, any and all accesses to it within the same expression must be for the purposes of
computing the value to be written. This rule effectively constrains legal expressions to those in
which the accesses demonstrably precede the modification. 

See also question 3.9. 

References: ANSI Sec. 2.1.2.3, Sec. 3.3, Appendix B 
ISO Sec. 5.1.2.3, Sec. 6.3, Annex C 
Rationale Sec. 2.1.2.3 
H&S Sec. 7.12.1 pp. 228-9 

Question 3.9

So given 
a[i] = i++;
we don't know which cell of a[] gets written to, but i does get incremented by one. 

No. Once an expression or program becomes undefined, all aspects of it become undefined. See
questions 3.2, 3.3, 11.33, and 11.35. 



Question 3.12

If I'm not using the value of the expression, should I use i++ or ++i to increment a variable? 

Since the two forms differ only in the value yielded, they are entirely equivalent when only their
side effect is needed. 

See also question 3.3. 

References: K&R1 Sec. 2.8 p. 43 
K&R2 Sec. 2.8 p. 47 
ANSI Sec. 3.3.2.4, Sec. 3.3.3.1 
ISO Sec. 6.3.2.4, Sec. 6.3.3.1 
H&S Sec. 7.4.4 pp. 192-3, Sec. 7.5.8 pp. 199-200 

Question 3.14

Why doesn't the code 
int a = 1000, b = 1000;
long int c = a * b;
work? 

Under C's integral promotion rules, the multiplication is carried out using int arithmetic, and the
result may overflow or be truncated before being promoted and assigned to the long int left-hand
side. Use an explicit cast to force long arithmetic: 
        long int c = (long int)a * b;
Note that (long int)(a * b) would not have the desired effect. 

A similar problem can arise when two integers are divided, with the result assigned to a floating-
point variable. 

References: K&R1 Sec. 2.7 p. 41 
K&R2 Sec. 2.7 p. 44 
ANSI Sec. 3.2.1.5 
ISO Sec. 6.2.1.5 
H&S Sec. 6.3.4 p. 176 
CT&P Sec. 3.9 pp. 49-50 

Question 3.16

I have a complicated expression which I have to assign to one of two variables, depending on a
condition. Can I use code like this? 
        ((condition) ? a : b) = complicated_expression;

No. The ?: operator, like most operators, yields a value, and you can't assign to a value. (In other
words, ?: does not yield an lvalue.) If you really want to, you can try something like 
        *((condition) ? &a : &b) = complicated_expression;
although this is admittedly not as pretty. 

References: ANSI Sec. 3.3.15 esp. footnote 50 
ISO Sec. 6.3.15 
H&S Sec. 7.1 pp. 179-180 



Question 4.2

I'm trying to declare a pointer and allocate some space for it, but it's not working. What's wrong
with this code? 
char *p;
*p = malloc(10);

The pointer you declared is p, not *p. To make a pointer point somewhere, you just use the name
of the pointer: 
        p = malloc(10);
It's when you're manipulating the pointed-to memory that you use * as an indirection operator: 
        *p = 'H';
See also questions 1.21, 7.1, and 8.3. 

References: CT&P Sec. 3.1 p. 28 

Question 4.3

Does *p++ increment p, or what it points to? 

Unary operators  like  *,  ++,  and  --  all  associate  (group)  from right  to  left.  Therefore,  *p++
increments p (and returns the value pointed to by p before the increment). To increment the value
pointed to by p, use (*p)++ (or perhaps ++*p, if the order of the side effect doesn't matter). 

References: K&R1 Sec. 5.1 p. 91 
K&R2 Sec. 5.1 p. 95 
ANSI Sec. 3.3.2, Sec. 3.3.3 
ISO Sec. 6.3.2, Sec. 6.3.3 
H&S Sec. 7.4.4 pp. 192-3, Sec. 7.5 p. 193, Secs. 7.5.7,7.5.8 pp. 199-200 

Question 4.5

I have a char * pointer that happens to point to some ints, and I want to step it over them. Why
doesn't 
((int *)p)++;
work? 

In C, a cast operator does not mean ``pretend these bits have a different type, and treat them
accordingly''; it is a conversion operator, and by definition it yields an rvalue, which cannot be
assigned to, or incremented with ++. (It is an anomaly in pcc-derived compilers, and an extension
in gcc, that expressions such as the above are ever accepted.) Say what you mean: use 
        p = (char *)((int *)p + 1);
or (since p is a char *) simply 
        p += sizeof(int);
Whenever possible,  you should choose appropriate pointer types in the first  place,  instead of
trying to treat one type as another. 

References: K&R2 Sec. A7.5 p. 205 
ANSI Sec. 3.3.4 (esp. footnote 14) 
ISO Sec. 6.3.4 
Rationale Sec. 3.3.2.4 



H&S Sec. 7.1 pp. 179-80 

Question 4.8

I have a function which accepts, and is supposed to initialize, a pointer: 
        void f(ip)
        int *ip;
        {
                static int dummy = 5;
                ip = &dummy;
        }
But when I call it like this: 
        int *ip;
        f(ip);
the pointer in the caller remains unchanged. 

Are you sure the function initialized what you thought it did? Remember that arguments in C are
passed by value. The called function altered only the passed copy of the pointer. You'll either
want to pass the address of the pointer (the function will end up accepting a pointer-to-a-pointer),
or have the function return the pointer. 

See also questions 4.9 and 4.11. 

Question 4.9

Can I use a void ** pointer to pass a generic pointer to a function by reference? 

Not portably. There is no generic pointer-to-pointer type in C. void * acts as a generic pointer
only because conversions are applied automatically when other pointer types are assigned to and
from void *'s; these conversions cannot be performed (the correct underlying pointer type is not
known) if an attempt is made to indirect upon a void ** value which points at something other
than a void *. 

Question 4.10

I have a function 
        extern int f(int *);
which accepts a pointer to an int. How can I pass a constant by reference? A call like 
        f(&5);
doesn't seem to work. 

You can't do this directly. You will have to declare a temporary variable, and then pass its address
to the function: 
        int five = 5;
        f(&five);
See also questions 2.10, 4.8, and 20.1. 

Question 4.11

Does C even have ``pass by reference''? 



Not really. Strictly speaking, C always uses pass by value. You can simulate pass by reference
yourself, by defining functions which accept pointers and then using the & operator when calling,
and the compiler will essentially simulate it for you when you pass an array to a function (by
passing a pointer instead, see question 6.4 et al.), but C has nothing truly equivalent to formal
pass by reference or C++ reference parameters. (However, function-like preprocessor macros do
provide a form of ``call by name''.) 

See also questions 4.8 and 20.1. 

References: K&R1 Sec. 1.8 pp. 24-5, Sec. 5.2 pp. 91-3 
K&R2 Sec. 1.8 pp. 27-8, Sec. 5.2 pp. 91-3 
ANSI Sec. 3.3.2.2, esp. footnote 39 
ISO Sec. 6.3.2.2 
H&S Sec. 9.5 pp. 273-4 

Question 4.12

I've seen different methods used for calling functions via pointers. What's the story? 

Originally, a pointer to a function had to be ``turned into'' a ``real'' function, with the * operator
(and an extra pair of parentheses, to keep the precedence straight), before calling: 
        int r, func(), (*fp)() = func;
        r = (*fp)();
It can also be argued that functions are always called via pointers, and that ``real'' function names
always decay implicitly into pointers (in expressions, as they do in initializations; see question
1.34). This reasoning, made widespread through pcc and adopted in the ANSI standard, means
that 
        r = fp();
is legal and works correctly, whether fp is the name of a function or a pointer to one. (The usage
has always been unambiguous; there is nothing you ever could have done with a function pointer
followed by an argument list except call the function pointed to.) An explicit * is still allowed
(and recommended, if portability to older compilers is important). 

See also question 1.34. 

References: K&R1 Sec. 5.12 p. 116 
K&R2 Sec. 5.11 p. 120 
ANSI Sec. 3.3.2.2 
ISO Sec. 6.3.2.2 
Rationale Sec. 3.3.2.2 
H&S Sec. 5.8 p. 147, Sec. 7.4.3 p. 190 

Question 5.1

What is this infamous null pointer, anyway? 

The language definition  states  that  for  each  pointer  type,  there is  a  special  value--the  ``null
pointer''--which is  distinguishable  from all  other  pointer  values  and which is  ``guaranteed to
compare unequal to a pointer to any object or function.'' That is, the address-of operator & will
never yield a null pointer, nor will a successful call to malloc. (malloc does return a null pointer
when it fails, and this is a typical use of null pointers: as a ``special'' pointer value with some
other meaning, usually ``not allocated'' or ``not pointing anywhere yet.'') 



A null pointer is conceptually different from an uninitialized pointer. A null pointer is known not
to  point  to  any object  or  function;  an  uninitialized  pointer  might  point  anywhere.  See  also
questions 1.30, 7.1, and 7.31. 

As mentioned above, there is a null pointer for each pointer type, and the internal values of null
pointers for different types may be different. Although programmers need not know the internal
values, the compiler must always be informed which type of null pointer is required, so that it can
make the distinction if necessary (see questions 5.2, 5.5, and 5.6). 

References: K&R1 Sec. 5.4 pp. 97-8 
K&R2 Sec. 5.4 p. 102 
ANSI Sec. 3.2.2.3 
ISO Sec. 6.2.2.3 
Rationale Sec. 3.2.2.3 
H&S Sec. 5.3.2 pp. 121-3 

Question 5.2

How do I get a null pointer in my programs? 

According to the language definition, a constant 0 in a pointer context is converted into a null
pointer at compile time. That is, in an initialization, assignment, or comparison when one side is
a variable or expression of pointer type, the compiler can tell that a constant 0 on the other side
requests  a  null  pointer,  and  generate  the  correctly-typed  null  pointer  value.  Therefore,  the
following fragments are perfectly legal: 
        char *p = 0;
        if(p != 0)
(See also question 5.3.) 

However, an argument being passed to a function is not necessarily recognizable as a pointer
context, and the compiler may not be able to tell that an unadorned 0 ``means'' a null pointer. To
generate a null pointer in a function call context, an explicit cast may be required, to force the 0
to be recognized as a pointer. For example, the Unix system call execl takes a variable-length,
null-pointer-terminated list of character pointer arguments, and is correctly called like this: 
        execl("/bin/sh", "sh", "-c", "date", (char *)0);
If the (char *) cast on the last argument were omitted, the compiler would not know to pass a null
pointer, and would pass an integer 0 instead. (Note that many Unix manuals get this example
wrong .) 

When function prototypes are in scope, argument passing becomes an ``assignment context,'' and
most casts may safely be omitted, since the prototype tells the compiler that a pointer is required,
and of which type, enabling it to correctly convert an unadorned 0. Function prototypes cannot
provide the types for variable arguments in variable-length argument lists however, so explicit
casts are still required for those arguments. (See also question 15.3.) It is safest to properly cast
all null pointer constants in function calls: to guard against varargs functions or those without
prototypes, to allow interim use of non-ANSI compilers, and to demonstrate that you know what
you are doing. (Incidentally, it's also a simpler rule to remember.) 

Summary: 
        Unadorned 0 okay:       Explicit cast required:
        initialization          function call,
                                no prototype in scope
        assignment
                                variable argument in
        comparison              varargs function call



        function call,
        prototype in scope,
        fixed argument
References: K&R1 Sec. A7.7 p. 190, Sec. A7.14 p. 192 
K&R2 Sec. A7.10 p. 207, Sec. A7.17 p. 209 
ANSI Sec. 3.2.2.3 
ISO Sec. 6.2.2.3 
H&S Sec. 4.6.3 p. 95, Sec. 6.2.7 p. 171 

Question 5.3

Is the abbreviated pointer comparison ``if(p)'' to test  for non-null  pointers valid?  What  if the
internal representation for null pointers is nonzero? 

When C requires the Boolean value of an expression (in the if, while, for, and do statements, and
with the &&, ||, !, and ?: operators), a false value is inferred when the expression compares equal
to zero, and a true value otherwise. That is, whenever one writes 
        if(expr)
where ``expr'' is any expression at all, the compiler essentially acts as if it had been written as 
        if((expr) != 0)
Substituting the trivial pointer expression ``p'' for ``expr,'' we have 
        if(p)   is equivalent to        if(p != 0)
and this is a comparison context, so the compiler can tell that the (implicit) 0 is actually a null
pointer  constant,  and use  the  correct  null  pointer  value.  There  is  no  trickery involved  here;
compilers  do  work  this  way,  and  generate  identical  code  for  both  constructs.  The  internal
representation of a null pointer does not matter. 

The boolean negation operator, !, can be described as follows: 
        !expr   is essentially equivalent to    (expr)?0:1
                or to   ((expr) == 0)
which leads to the conclusion that 
        if(!p)  is equivalent to        if(p == 0)
``Abbreviations'' such as if(p), though perfectly legal, are considered by some to be bad style (and
by others to be good style; see question 17.10). 

See also question 9.2. 

References: K&R2 Sec. A7.4.7 p. 204 
ANSI Sec. 3.3.3.3, Sec. 3.3.9, Sec. 3.3.13, Sec. 3.3.14, Sec. 3.3.15, Sec. 3.6.4.1, Sec. 3.6.5 
ISO Sec. 6.3.3.3, Sec. 6.3.9, Sec. 6.3.13, Sec. 6.3.14, Sec. 6.3.15, Sec. 6.6.4.1, Sec. 6.6.5 
H&S Sec. 5.3.2 p. 122 

Question 5.4

What is NULL and how is it #defined? 

As a matter of style, many programmers prefer not to have unadorned 0's scattered through their
programs. Therefore,  the preprocessor  macro NULL is  #defined (by <stdio.h> or <stddef.h>)
with the value 0, possibly cast to (void *) (see also question 5.6). A programmer who wishes to
make explicit the distinction between 0 the integer and 0 the null pointer constant can then use
NULL whenever a null pointer is required. 



Using NULL is a stylistic convention only; the preprocessor turns NULL back into 0 which is
then recognized by the compiler, in pointer contexts, as before. In particular, a cast may still be
necessary before NULL (as before 0) in a function call argument. The table under question 5.2
above applies for NULL as well as 0 (an unadorned NULL is equivalent to an unadorned 0). 

NULL should only be used for pointers; see question 5.9. 

References: K&R1 Sec. 5.4 pp. 97-8 
K&R2 Sec. 5.4 p. 102 
ANSI Sec. 4.1.5, Sec. 3.2.2.3 
ISO Sec. 7.1.6, Sec. 6.2.2.3 
Rationale Sec. 4.1.5 
H&S Sec. 5.3.2 p. 122, Sec. 11.1 p. 292 

Question 5.5

How should NULL be defined on a machine which uses a nonzero bit pattern as the internal
representation of a null pointer? 

The same as on any other machine: as 0 (or ((void *)0)). 

Whenever a programmer requests  a  null  pointer,  either by writing ``0''  or  ``NULL,''  it  is  the
compiler's responsibility to generate whatever bit pattern the machine uses for that null pointer.
Therefore, #defining NULL as 0 on a machine for which internal null pointers are nonzero is as
valid as on any other: the compiler must always be able to generate the machine's correct null
pointers in response to unadorned 0's seen in pointer contexts. See also questions 5.2, 5.10, and
5.17. 

References: ANSI Sec. 4.1.5 
ISO Sec. 7.1.6 
Rationale Sec. 4.1.5 

Question 5.6

If NULL were defined as follows: 
        #define NULL ((char *)0)
wouldn't that make function calls which pass an uncast NULL work? 

Not  in  general.  The  problem  is  that  there  are  machines  which  use  different  internal
representations  for  pointers  to  different  types of  data.  The  suggested  definition  would make
uncast NULL arguments to functions expecting pointers to characters work correctly, but pointer
arguments of other types would still be problematical, and legal constructions such as 
        FILE *fp = NULL;
could fail. 

Nevertheless, ANSI C allows the alternate definition 
        #define NULL ((void *)0)
for NULL. Besides potentially helping incorrect programs to work (but only on machines with
homogeneous pointers, thus questionably valid assistance), this definition may catch programs
which  use  NULL incorrectly (e.g.  when  the  ASCII NUL character  was  really intended;  see
question 5.9). 

References: Rationale Sec. 4.1.5 



Question 5.9

If NULL and 0 are equivalent as null pointer constants, which should I use? 

Many programmers believe that NULL should be used in all pointer contexts, as a reminder that
the value is to be thought of as a pointer. Others feel that the confusion surrounding NULL and 0
is only compounded by hiding 0 behind a macro, and prefer to use unadorned 0 instead. There is
no one right answer. (See also questions 9.2 and 17.10.) C programmers must understand that
NULL and 0 are interchangeable in pointer contexts, and that an uncast 0 is perfectly acceptable.
Any usage of NULL (as opposed to 0) should be considered a gentle reminder that a pointer is
involved;  programmers  should  not  depend  on  it  (either  for  their  own  understanding  or  the
compiler's) for distinguishing pointer 0's from integer 0's. 

NULL should not be used when another kind of 0 is required, even though it might work, because
doing so sends the wrong stylistic message. (Furthermore, ANSI allows the definition of NULL
to be ((void *)0), which will not work at all in non-pointer contexts.) In particular, do not use
NULL when the ASCII null character (NUL) is desired. Provide your own definition 
        #define NUL '\0'
if you must. 

References: K&R1 Sec. 5.4 pp. 97-8 
K&R2 Sec. 5.4 p. 102 

Question 5.10

But wouldn't  it  be  better to  use NULL (rather than 0),  in  case the  value of  NULL changes,
perhaps on a machine with nonzero internal null pointers? 

No. (Using NULL may be preferable, but not for this reason.) Although symbolic constants are
often used in place of numbers because the numbers might change, this is not the reason that
NULL is used in place of 0. Once again, the language guarantees that source-code 0's (in pointer
contexts) generate null pointers. NULL is used only as a stylistic convention. See questions 5.5
and 9.2. 

Question 5.12

I use the preprocessor macro 
#define Nullptr(type) (type *)0
to help me build null pointers of the correct type. 

This trick, though popular and superficially attractive, does not buy much. It is not needed in
assignments and comparisons; see question 5.2. It does not even save keystrokes. Its use may
suggest to the reader that the program's author is shaky on the subject of null pointers, requiring
that the #definition of the macro, its invocations, and all other pointer usages be checked. See
also questions 9.1 and 10.2. 

Question 5.13

This is strange. NULL is guaranteed to be 0, but the null pointer is not? 



When the term ``null'' or ``NULL'' is casually used, one of several things may be meant: 

1. 1. The conceptual null pointer, the abstract language concept defined in question 5.1. It is
implemented with... 

2. 2. The internal (or run-time) representation of a null pointer, which may or may not be all-
bits-0 and which may be different for different pointer types. The actual values should be
of concern only to compiler writers. Authors of C programs never see them, since they
use... 

3. 3. The null pointer constant, which is a constant integer 0 (see question 5.2). It is often
hidden behind... 

4. 4. The NULL macro, which is #defined to be 0 or ((void *)0) (see question 5.4). Finally,
as red herrings, we have... 

5. 5. The ASCII null character (NUL), which does have all bits zero, but has no necessary
relation to the null pointer except in name; and... 

6. 6. The ``null string,'' which is another name for the empty string (""). Using the term ``null
string'' can be confusing in C, because an empty string involves a null ('\0') character, but
not a null pointer, which brings us full circle... 

This article uses the phrase ``null pointer'' (in lower case) for sense 1, the character ``0'' or the
phrase ``null pointer constant'' for sense 3, and the capitalized word ``NULL'' for sense 4. 

Question 5.14

Why is there so much confusion surrounding null pointers? Why do these questions come up so
often? 

C programmers traditionally like to know more than they need to about the underlying machine
implementation. The fact that null pointers are represented both in source code, and internally to
most  machines,  as  zero  invites  unwarranted  assumptions.  The  use  of  a  preprocessor  macro
(NULL) may seem to suggest that the value could change some day, or on some weird machine.
The construct ``if(p == 0)'' is easily misread as calling for conversion of p to an integral type,
rather than 0 to a pointer type, before the comparison. Finally, the distinction between the several
uses of the term ``null'' (listed in question 5.13) is often overlooked. 

One good way to wade out of the confusion is to imagine that C used a keyword (perhaps nil, like
Pascal) as a null pointer constant. The compiler could either turn nil into the correct type of null
pointer when it could determine the type from the source code, or complain when it could not.
Now in fact, in C the keyword for a null pointer constant is not nil but 0, which works almost as
well, except that an uncast 0 in a non-pointer context generates an integer zero instead of an error
message, and if that uncast 0 was supposed to be a null pointer constant, the code may not work. 

Question 5.15

I'm confused. I just can't understand all this null pointer stuff. 

Follow these two simple rules: 

1. When you want a null pointer constant in source code, use ``0'' or ``NULL''. 

2. If the usage of ``0'' or ``NULL'' is an argument in a function call, cast it to the pointer type
expected by the function being called. 



The rest of the discussion has to do with other people's  misunderstandings, with the internal
representation  of  null  pointers  (which  you  shouldn't  need  to  know),  and  with  ANSI  C
refinements. Understand questions 5.1, 5.2, and 5.4, and consider 5.3, 5.9, 5.13, and 5.14, and
you'll do fine. 

Question 5.16

Given all the confusion surrounding null pointers, wouldn't it be easier simply to require them to
be represented internally by zeroes? 

If for no other reason, doing so would be ill-advised because it would unnecessarily constrain
implementations which would otherwise naturally represent null pointers by special, nonzero bit
patterns,  particularly  when  those  values  would  trigger  automatic  hardware  traps  for  invalid
accesses. 

Besides, what would such a requirement really accomplish? Proper understanding of null pointers
does not require knowledge of the internal representation, whether zero or nonzero. Assuming
that null pointers are internally zero does not make any code easier to write (except for a certain
ill-advised usage of calloc; see question 7.31). Known-zero internal pointers would not obviate
casts in function calls, because the size of the pointer might still be different from that of an int.
(If ``nil'' were used to request null pointers, as mentioned in question 5.14, the urge to assume an
internal zero representation would not even arise.) 

Question 5.17

Seriously, have any actual machines really used nonzero null pointers, or different representations
for pointers to different types? 

The Prime 50 series used segment 07777, offset 0 for the null pointer, at least for PL/I. Later
models used segment 0, offset 0 for null pointers in C, necessitating new instructions such as
TCNP (Test C Null Pointer), evidently as a sop to all the extant poorly-written C code which
made incorrect  assumptions.  Older,  word-addressed  Prime  machines  were  also  notorious  for
requiring larger byte pointers (char *'s) than word pointers (int *'s). 

The Eclipse MV series from Data General has three architecturally supported pointer formats
(word, byte, and bit pointers), two of which are used by C compilers: byte pointers for char * and
void *, and word pointers for everything else. 

Some Honeywell-Bull mainframes use the bit pattern 06000 for (internal) null pointers. 

The CDC Cyber 180 Series has 48-bit pointers consisting of a ring, segment, and offset. Most
users (in ring 11) have null pointers of 0xB00000000000. It was common on old CDC ones-
complement machines to use an all-one-bits word as a special flag for all kinds of data, including
invalid addresses. 

The old HP 3000 series uses a different addressing scheme for byte addresses than for word
addresses; like several of the machines above it therefore uses different representations for char *
and void * pointers than for other pointers. 

The Symbolics Lisp Machine, a tagged architecture, does not even have conventional numeric
pointers; it uses the pair <NIL, 0> (basically a nonexistent <object, offset> handle) as a C null
pointer. 

Depending on the ``memory model'' in use, 8086-family processors (PC compatibles) may use
16-bit data pointers and 32-bit function pointers, or vice versa. 



Some 64-bit Cray machines represent int * in the lower 48 bits of a word; char * additionally uses
the upper 16 bits to indicate a byte address within a word. 

References: K&R1 Sec. A14.4 p. 211 

Question 5.20

What does a run-time ``null pointer assignment'' error mean? How do I track it down? 

This message, which typically occurs with MS-DOS compilers (see, therefore, section 19) means
that you've written, via a null (perhaps because uninitialized) pointer, to location 0. (See also
question 16.8.) 

A  debugger  may  let  you  set  a  data  breakpoint  or  watchpoint  or  something  on  location  0.
Alternatively, you could write a bit of code to stash away a copy of 20 or so bytes from location
0, and periodically check that the memory at location 0 hasn't changed. 

Question 6.1

I had the definition char a[6] in one source file, and in another I declared extern char *a. Why
didn't it work? 

The declaration extern char *a simply does not match the actual definition. The type pointer-to-
type-T is not the same as array-of-type-T. Use extern char a[]. 

References: ANSI Sec. 3.5.4.2 
ISO Sec. 6.5.4.2 
CT&P Sec. 3.3 pp. 33-4, Sec. 4.5 pp. 64-5 

Question 6.2

But I heard that char a[] was identical to char *a. 

Not at all.  (What you heard has to do with formal parameters to functions; see question 6.4.)
Arrays are not pointers. The array declaration char a[6] requests that space for six characters be
set aside, to be known by the name ``a.'' That is,  there is a location named ``a'' at  which six
characters can sit.  The pointer declaration char *p, on the other hand, requests a place which
holds a pointer, to be known by the name ``p.'' This pointer can point almost anywhere: to any
char, or to any contiguous array of chars, or nowhere (see also questions 5.1 and 1.30). 

As usual, a picture is worth a thousand words. The declarations 
        char a[] = "hello";
        char *p = "world";
would initialize data structures which could be represented like this: 
           +---+---+---+---+---+---+
        a: | h | e | l | l | o |\0 |
           +---+---+---+---+---+---+
           +-----+     +---+---+---+---+---+---+
        p: |  *======> | w | o | r | l | d |\0 |
           +-----+     +---+---+---+---+---+---+
It is important to realize that a reference like x[3] generates different code depending on whether
x is an array or a pointer. Given the declarations above, when the compiler sees the expression a
[3], it emits code to start at the location ``a,'' move three past it, and fetch the character there.



When it sees the expression p[3], it emits code to start at the location ``p,'' fetch the pointer value
there, add three to the pointer, and finally fetch the character pointed to. In other words, a[3] is
three places past  (the start  of) the object named a,  while p[3] is  three places past  the object
pointed to by p. In the example above, both a[3] and p[3] happen to be the character 'l', but the
compiler gets there differently. 

References: K&R2 Sec. 5.5 p. 104 
CT&P Sec. 4.5 pp. 64-5 

Question 6.3

So what is meant by the ``equivalence of pointers and arrays'' in C? 

Much of the confusion surrounding arrays and pointers in C can be traced to a misunderstanding
of this statement. Saying that arrays and pointers are ``equivalent'' means neither that they are
identical nor even interchangeable. 

``Equivalence'' refers to the following key definition: 

An lvalue  of  type  array-of-T  which  appears  in  an  expression  decays  (with  three
exceptions)  into a pointer  to  its  first  element;  the  type of the resultant  pointer  is
pointer-to-T. 

(The exceptions are when the array is the operand of a sizeof or & operator, or is a string literal
initializer for a character array.) 

As a consequence of this definition, the compiler doesn't apply the array subscripting operator []
that differently to arrays and pointers, after all. In an expression of the form a[i], the array decays
into  a  pointer,  following the  rule  above,  and  is  then subscripted  just  as  would  be a  pointer
variable  in  the  expression  p[i]  (although  the  eventual  memory accesses  will  be  different,  as
explained in question 6.2). If you were to assign the array's address to the pointer: 
        p = a;
then p[3] and a[3] would access the same element. 

See also question 6.8. 

References: K&R1 Sec. 5.3 pp. 93-6 
K&R2 Sec. 5.3 p. 99 
ANSI Sec. 3.2.2.1, Sec. 3.3.2.1, Sec. 3.3.6 
ISO Sec. 6.2.2.1, Sec. 6.3.2.1, Sec. 6.3.6 
H&S Sec. 5.4.1 p. 124 

Question 6.4

Then why are array and pointer declarations interchangeable as function formal parameters? 

It's supposed to be a convenience. 

Since arrays decay immediately into pointers,  an array is never actually passed to a function.
Allowing pointer parameters to be declared as arrays is a simply a way of making it look as
though the array was being passed--a programmer may wish to emphasize that a parameter is
traditionally treated as if  it  were an array, or  that  an array (strictly speaking,  the address)  is
traditionally passed. As a convenience, therefore, any parameter declarations which ``look like''
arrays, e.g. 



        f(a)
        char a[];
        { ... }
are treated by the compiler as if they were pointers, since that is what the function will receive if
an array is passed: 
        f(a)
        char *a;
        { ... }
This conversion holds only within function formal parameter declarations, nowhere else. If the
conversion  bothers  you,  avoid  it;  many people  have  concluded  that  the  confusion  it  causes
outweighs the small advantage of having the declaration ``look like'' the call or the uses within
the function. 

See also question 6.21. 

References: K&R1 Sec. 5.3 p. 95, Sec. A10.1 p. 205 
K&R2 Sec. 5.3 p. 100, Sec. A8.6.3 p. 218, Sec. A10.1 p. 226 
ANSI Sec. 3.5.4.3, Sec. 3.7.1, Sec. 3.9.6 
ISO Sec. 6.5.4.3, Sec. 6.7.1, Sec. 6.9.6 
H&S Sec. 9.3 p. 271 
CT&P Sec. 3.3 pp. 33-4 

Question 6.7

How can an array be an lvalue, if you can't assign to it? 

The ANSI C Standard defines a ``modifiable lvalue,'' which an array is not. 

References: ANSI Sec. 3.2.2.1 
ISO Sec. 6.2.2.1 
Rationale Sec. 3.2.2.1 
H&S Sec. 7.1 p. 179 

Question 6.8

Practically speaking, what is the difference between arrays and pointers? 

Arrays automatically allocate space, but can't be relocated or resized. Pointers must be explicitly
assigned to point to allocated space (perhaps using malloc), but can be reassigned (i.e. pointed at
different objects) at will,  and have many other uses besides serving as the base of blocks of
memory. 

Due to the so-called equivalence of arrays and pointers (see question 6.3), arrays and pointers
often seem interchangeable, and in particular a pointer to a block of memory assigned by malloc
is  frequently treated (and can be  referenced using [])  exactly as  if  it  were a  true array. See
questions 6.14 and 6.16. (Be careful with sizeof, though.) 

See also questions 1.32 and 20.14. 

Question 6.9

Someone explained to me that arrays were really just constant pointers. 



This is a bit of an oversimplification. An array name is ``constant'' in that it cannot be assigned to,
but an array is not a pointer, as the discussion and pictures in question 6.2 should make clear. See
also questions 6.3 and 6.8. 

Question 6.11

I came across some ``joke'' code containing the ``expression'' 5["abcdef"] . How can this be legal
C? 

Yes, Virginia, array subscripting is commutative in C. This curious fact follows from the pointer
definition  of  array  subscripting,  namely  that  a[e]  is  identical  to  *((a)+(e)),  for  any  two
expressions a and e, as long as one of them is a pointer expression and one is integral. This
unsuspected commutativity is often mentioned in C texts as if it were something to be proud of,
but it finds no useful application outside of the Obfuscated C Contest (see question 20.36). 

References: Rationale Sec. 3.3.2.1 
H&S Sec. 5.4.1 p. 124, Sec. 7.4.1 pp. 186-7 

Question 6.12

Since array references decay into pointers, if arr is an array, what's the difference between arr and
&arr? 

The type. 

In Standard C, &arr yields a pointer, of type pointer-to-array-of-T, to the entire array. (In pre-
ANSI C, the & in &arr generally elicited a warning, and was generally ignored.) Under all C
compilers, a simple reference (without an explicit &) to an array yields a pointer, of type pointer-
to-T, to the array's first element. (See also questions 6.3, 6.13, and 6.18.) 

References: ANSI Sec. 3.2.2.1, Sec. 3.3.3.2 
ISO Sec. 6.2.2.1, Sec. 6.3.3.2 
Rationale Sec. 3.3.3.2 
H&S Sec. 7.5.6 p. 198 

Question 6.13

How do I declare a pointer to an array? 

Usually, you don't want to. When people speak casually of a pointer to an array, they usually
mean a pointer to its first element. 

Instead of a pointer to an array, consider using a pointer to one of the array's elements. Arrays of
type T decay into pointers to  type T (see question 6.3),  which is  convenient;  subscripting or
incrementing the resultant pointer will access the individual members of the array. True pointers
to arrays, when subscripted or incremented, step over entire arrays, and are generally useful only
when operating on arrays of arrays, if at all. (See question 6.18.) 

If you really need to declare a pointer to an entire array, use something like ``int (*ap)[N];'' where
N is the size of the array. (See also question 1.21.) If the size of the array is unknown, N can in
principle be omitted, but the resulting type, ``pointer to array of unknown size,'' is useless. 

See also question 6.12. 



References: ANSI Sec. 3.2.2.1 
ISO Sec. 6.2.2.1 

Question 6.14

How can I set an array's size at run time? 
How can I avoid fixed-sized arrays? 

The equivalence between arrays and pointers (see question 6.3) allows a pointer to malloc'ed
memory to simulate an array quite effectively. After executing 
        #include <stdlib.h>
        int *dynarray = (int *)malloc(10 * sizeof(int));
(and if the call to malloc succeeds), you can reference dynarray[i] (for i from 0 to 9) just as if
dynarray were a conventional, statically-allocated array (int a[10]). See also question 6.16. 

Question 6.15

How can I declare local arrays of a size matching a passed-in array? 

You can't, in C. Array dimensions must be compile-time constants. (gcc provides parameterized
arrays as an extension.) You'll have to use malloc, and remember to call free before the function
returns. See also questions 6.14, 6.16, 6.19, 7.22, and maybe 7.32. 

References: ANSI Sec. 3.4, Sec. 3.5.4.2 
ISO Sec. 6.4, Sec. 6.5.4.2 

Question 6.16

How can I dynamically allocate a multidimensional array? 

It is usually best to allocate an array of pointers, and then initialize each pointer to a dynamically-
allocated ``row.'' Here is a two-dimensional example: 
        #include <stdlib.h>
        int **array1 = (int **)malloc(nrows * sizeof(int *));
        for(i = 0; i < nrows; i++)
                array1[i] = (int *)malloc(ncolumns * sizeof(int));
(In real code, of course, all of malloc's return values would be checked.) 

You can keep the array's contents contiguous, while making later reallocation of individual rows
difficult, with a bit of explicit pointer arithmetic: 
        int **array2 = (int **)malloc(nrows * sizeof(int *));
        array2[0] = (int *)malloc(nrows * ncolumns * sizeof(int));
        for(i = 1; i < nrows; i++)
                array2[i] = array2[0] + i * ncolumns;
In either case,  the elements  of the dynamic array can be accessed with normal-looking array
subscripts: arrayx[i][j] (for 0 <= i < NROWS and 0 <= j < NCOLUMNS). 

If the double indirection implied by the above schemes is for some reason unacceptable, you can
simulate a two-dimensional array with a single, dynamically-allocated one-dimensional array: 
        int *array3 = (int *)malloc(nrows * ncolumns * sizeof(int));
However,  you must  now perform subscript  calculations manually, accessing the i,jth  element



with array3[i * ncolumns + j]. (A macro could hide the explicit calculation, but invoking it would
require parentheses and commas which wouldn't look exactly like multidimensional array syntax,
and the macro would need access to at least one of the dimensions, as well. See also question
6.19.) 

Finally, you could use pointers to arrays: 
        int (*array4)[NCOLUMNS] =
                (int (*)[NCOLUMNS])malloc(nrows * sizeof(*array4));
but the syntax starts getting horrific and at most one dimension may be specified at run time. 

With all of these techniques, you may of course need to remember to free the arrays (which may
take several steps; see question 7.23) when they are no longer needed, and you cannot necessarily
intermix dynamically-allocated arrays with conventional, statically-allocated ones (see question
6.20, and also question 6.18). 

All of these techniques can also be extended to three or more dimensions. 

Question 6.17

Here's a neat trick: if I write 
        int realarray[10];
        int *array = &realarray[-1];
I can treat array as if it were a 1-based array. 

Although this technique is attractive (and was used in old editions of the book Numerical Recipes
in C), it does not conform to the C standards. Pointer arithmetic is defined only as long as the
pointer points within the same allocated block of memory, or to the imaginary ``terminating''
element one past it; otherwise, the behavior is undefined, even if the pointer is not dereferenced.
The code above could fail  if,  while  subtracting the  offset,  an illegal  address were generated
(perhaps  because  the  address  tried  to  ``wrap  around''  past  the  beginning  of  some  memory
segment). 

References: K&R2 Sec. 5.3 p. 100, Sec. 5.4 pp. 102-3, Sec. A7.7 pp. 205-6 
ANSI Sec. 3.3.6 
ISO Sec. 6.3.6 
Rationale Sec. 3.2.2.3 

Question 6.18

My compiler complained when I passed a two-dimensional array to a function expecting a pointer
to a pointer. 

The rule (see question 6.3) by which arrays decay into pointers is not applied recursively. An
array of arrays (i.e. a two-dimensional array in C) decays into a pointer to an array, not a pointer
to a pointer. Pointers to arrays can be confusing, and must be treated carefully; see also question
6.13. (The confusion is heightened by the existence of incorrect compilers, including some old
versions of pcc and pcc-derived lints, which improperly accept assignments of multi-dimensional
arrays to multi-level pointers.) 

If you are passing a two-dimensional array to a function: 
        int array[NROWS][NCOLUMNS];
        f(array);
the function's declaration must match: 



        f(int a[][NCOLUMNS])
        { ... }
or 
        f(int (*ap)[NCOLUMNS])  /* ap is a pointer to an array */
        { ... }
In the first declaration, the compiler performs the usual implicit parameter rewriting of ``array of
array'' to ``pointer to array'' (see questions 6.3 and 6.4); in the second form the pointer declaration
is explicit.  Since the called function does not allocate space for the array, it does not need to
know the overall size, so the number of rows, NROWS, can be omitted. The ``shape'' of the array
is still important, so the column dimension NCOLUMNS (and, for three- or more dimensional
arrays, the intervening ones) must be retained. 

If a function is already declared as accepting a pointer to a pointer, it is probably meaningless to
pass a two-dimensional array directly to it. 

See also questions 6.12 and 6.15. 

References: K&R1 Sec. 5.10 p. 110 
K&R2 Sec. 5.9 p. 113 
H&S Sec. 5.4.3 p. 126 

Question 6.19

How do I write functions which accept two-dimensional arrays when the ``width'' is not known at
compile time? 

It's not easy. One way is to pass in a pointer to the [0][0] element, along with the two dimensions,
and simulate array subscripting ``by hand:'' 
        f2(aryp, nrows, ncolumns)
        int *aryp;
        int nrows, ncolumns;
        { ... array[i][j] is accessed as aryp[i * ncolumns + j] ... }
This function could be called with the array from question 6.18 as 
        f2(&array[0][0], NROWS, NCOLUMNS);
It must be noted, however, that a program which performs multidimensional array subscripting
``by hand'' in this way is not in strict conformance with the ANSI C Standard; according to an
official  interpretation,  the  behavior  of  accessing  (&array[0][0])[x]  is  not  defined  for  x  >=
NCOLUMNS. 

gcc allows local arrays to be declared having sizes which are specified by a function's arguments,
but this is a nonstandard extension. 

When you want to be able to use a function on multidimensional arrays of various sizes, one
solution is to simulate all the arrays dynamically, as in question 6.16. 

See also questions 6.18, 6.20, and 6.15. 

References: ANSI Sec. 3.3.6 
ISO Sec. 6.3.6 

Question 6.20

How can I use  statically- and dynamically-allocated  multidimensional  arrays interchangeably
when passing them to functions? 



There is no single perfect method. Given the declarations 
        int array[NROWS][NCOLUMNS];
        int **array1;           /* ragged */
        int **array2;           /* contiguous */
        int *array3;            /* "flattened" */
        int (*array4)[NCOLUMNS];
with the pointers initialized as in the code fragments in question 6.16, and functions declared as 
        f1(int a[][NCOLUMNS], int nrows, int ncolumns);
        f2(int *aryp, int nrows, int ncolumns);
        f3(int **pp, int nrows, int ncolumns);
where f1 accepts a conventional two-dimensional array, f2 accepts a ``flattened'' two-dimensional
array, and f3 accepts a pointer-to-pointer, simulated array (see also questions 6.18 and 6.19), the
following calls should work as expected: 
        f1(array, NROWS, NCOLUMNS);
        f1(array4, nrows, NCOLUMNS);
        f2(&array[0][0], NROWS, NCOLUMNS);
        f2(*array, NROWS, NCOLUMNS);
        f2(*array2, nrows, ncolumns);
        f2(array3, nrows, ncolumns);
        f2(*array4, nrows, NCOLUMNS);
        f3(array1, nrows, ncolumns);
        f3(array2, nrows, ncolumns);
The following two calls would probably work on most systems, but involve questionable casts,
and work only if the dynamic ncolumns matches the static NCOLUMNS: 
        f1((int (*)[NCOLUMNS])(*array2), nrows, ncolumns);
        f1((int (*)[NCOLUMNS])array3, nrows, ncolumns);
It must again be noted that passing &array[0][0] (or, equivalently, *array) to f2 is not strictly
conforming; see question 6.19. 

If you can understand why all of the above calls work and are written as they are, and if you
understand why the combinations that are not listed would not work, then you have a very good
understanding of arrays and pointers in C. 

Rather than worrying about all of this, one approach to using multidimensional arrays of various
sizes is to make them all dynamic, as in question 6.16. If there are no static multidimensional
arrays--if all arrays are allocated like array1 or array2 in question 6.16--then all functions can be
written like f3. 

Question 6.21

Why doesn't  sizeof  properly report  the  size  of  an  array when  the  array is  a  parameter  to  a
function? 

The compiler pretends that the array parameter was declared as a pointer (see question 6.4), and
sizeof reports the size of the pointer. 

References: H&S Sec. 7.5.2 p. 195 

Question 7.1

Why doesn't this fragment work? 
        char *answer;
        printf("Type something:\n");
        gets(answer);
        printf("You typed \"%s\"\n", answer);



The pointer variable answer, which is handed to gets() as the location into which the response
should be stored, has not been set to point to any valid storage. That is, we cannot say where the
pointer answer points. (Since local variables are not initialized, and typically contain garbage, it is
not even guaranteed that answer starts out as a null pointer. See questions 1.30 and 5.1.) 

The simplest way to correct the question-asking program is to use a local array, instead of a
pointer, and let the compiler worry about allocation: 
#include <stdio.h>
#include <string.h>
char answer[100], *p;
printf("Type something:\n");
fgets(answer, sizeof answer, stdin);
if((p = strchr(answer, '\n')) != NULL)
        *p = '\0';
printf("You typed \"%s\"\n", answer);
This example also uses fgets() instead of gets(), so that the end of the array cannot be overwritten.
(See question 12.23. Unfortunately for this example, fgets() does not automatically delete the
trailing \n, gets() would.) It would also be possible to use malloc() to allocate the answer buffer. 

Question 7.2

I can't get strcat to work. I tried 
        char *s1 = "Hello, ";
        char *s2 = "world!";
        char *s3 = strcat(s1, s2);
but I got strange results. 

As in question 7.1, the main problem here is that space for the concatenated result is not properly
allocated. C does not provide an automatically-managed string type. C compilers only allocate
memory for objects explicitly mentioned in the source code (in the case of ``strings,'' this includes
character arrays and string literals). The programmer must arrange for sufficient space for the
results of run-time operations such as string concatenation, typically by declaring arrays, or by
calling malloc. 

strcat performs no allocation; the second string is appended to the first one, in place. Therefore,
one fix would be to declare the first string as an array: 
        char s1[20] = "Hello, ";
Since strcat returns the value of its first argument (s1, in this case), the variable s3 is superfluous. 

The original call to strcat in the question actually has two problems: the string literal pointed to
by s1, besides not being big enough for any concatenated text, is not necessarily writable at all.
See question 1.32. 

References: CT&P Sec. 3.2 p. 32 

Question 7.3

But the man page for strcat says that it takes two char *'s as arguments. How am I supposed to
know to allocate things? 

In general, when using pointers you always have to consider memory allocation, if only to make
sure that the compiler is doing it for you. If a library function's documentation does not explicitly
mention allocation, it is usually the caller's problem. 



The Synopsis section at the top of a Unix-style man page or in the ANSI C standard can be
misleading. The code fragments presented there are closer to the function definitions used by an
implementor than the invocations used by the caller. In particular, many functions which accept
pointers  (e.g.  to  structures  or  strings)  are  usually called  with  the  address  of  some object  (a
structure, or an array--see questions 6.3 and 6.4). Other common examples are time (see question
13.12) and stat. 

Question 7.5

I have a function that is supposed to return a string, but when it returns to its caller, the returned
string is garbage. 

Make sure that the pointed-to memory is properly allocated. The returned pointer should be to a
statically-allocated buffer, or to a buffer passed in by the caller,  or to memory obtained with
malloc, but not to a local (automatic) array. In other words, never do something like 
        char *itoa(int n)
        {
                char retbuf[20];                /* WRONG */
                sprintf(retbuf, "%d", n);
                return retbuf;                  /* WRONG */
        }
One fix (which is  imperfect,  especially if the function in question is called recursively, or if
several of its return values are needed simultaneously) would be to declare the return buffer as 
                static char retbuf[20];
See also questions 12.21 and 20.1. 

References: ANSI Sec. 3.1.2.4 
ISO Sec. 6.1.2.4 

Question 7.6

Why am I getting ``warning: assignment of pointer from integer lacks a cast'' for calls to malloc? 

Have you #included <stdlib.h>, or otherwise arranged for malloc to be declared properly? 

References: H&S Sec. 4.7 p. 101 

Question 7.7

Why does some code carefully cast  the values  returned by malloc  to the pointer  type being
allocated? 

Before  ANSI/ISO Standard  C  introduced  the  void  *  generic  pointer  type,  these  casts  were
typically required to silence warnings (and perhaps induce conversions) when assigning between
incompatible pointer types. (Under ANSI/ISO Standard C, these casts are no longer necessary.) 

References: H&S Sec. 16.1 pp. 386-7 

Question 7.8

I see code like 
        char *p = malloc(strlen(s) + 1);



        strcpy(p, s);
Shouldn't that be malloc((strlen(s) + 1) * sizeof(char))? 

It's never necessary to multiply by sizeof(char), since sizeof(char) is, by definition, exactly 1. (On
the other hand, multiplying by sizeof(char) doesn't hurt, and may help by introducing a size_t into
the expression.) See also question 8.9. 

References: ANSI Sec. 3.3.3.4 
ISO Sec. 6.3.3.4 
H&S Sec. 7.5.2 p. 195 

Question 7.14

I've  heard  that  some  operating  systems  don't  actually  allocate  malloc'ed  memory  until  the
program tries to use it. Is this legal? 

It's hard to say. The Standard doesn't say that systems can act this way, but it doesn't explicitly say
that they can't, either. 

References: ANSI Sec. 4.10.3 
ISO Sec. 7.10.3 

Question 7.16

I'm allocating a large array for some numeric work, using the line 
        double *array = malloc(256 * 256 * sizeof(double));
malloc isn't returning null, but the program is acting strangely, as if it's overwriting memory, or
malloc isn't allocating as much as I asked for, or something. 

Notice that 256 x 256 is 65,536, which will not fit in a 16-bit int, even before you multiply it by
sizeof(double). If you need to allocate this much memory, you'll have to be careful. If size_t (the
type accepted by malloc) is a 32-bit type on your machine, but int is 16 bits, you might be able to
get away with writing 256 * (256 * sizeof(double)) (see question 3.14). Otherwise, you'll have to
break  your  data  structure  up  into  smaller  chunks,  or  use  a  32-bit  machine,  or  use  some
nonstandard memory allocation routines. See also question 19.23. 

Question 7.17

I've got 8 meg of memory in my PC. Why can I only seem to malloc 640K or so? 

Under the segmented architecture of PC compatibles, it can be difficult to use more than 640K
with any degree of transparency. See also question 19.23.

Question 7.19

My program is  crashing,  apparently somewhere down inside malloc,  but  I can't  see anything
wrong with it. 

It  is  unfortunately  very  easy  to  corrupt  malloc's  internal  data  structures,  and  the  resulting



problems can be stubborn. The most common source of problems is writing more to a malloc'ed
region than it was allocated to hold; a particularly common bug is to malloc(strlen(s)) instead of
strlen(s) + 1. Other problems may involve using pointers to freed storage, freeing pointers twice,
freeing pointers not obtained from malloc, or trying to realloc a null pointer (see question 7.30). 

See also questions 7.26, 16.8, and 18.2. 

Question 7.20

You can't use dynamically-allocated memory after you free it, can you? 

No. Some early documentation for malloc stated that the contents of freed memory were ``left
undisturbed,'' but this  ill-advised guarantee was never universal  and is  not required by the C
Standard. 

Few programmers would use the contents of freed memory deliberately, but it is easy to do so
accidentally. Consider the following (correct) code for freeing a singly-linked list: 
        struct list *listp, *nextp;
        for(listp = base; listp != NULL; listp = nextp) {
                nextp = listp->next;
                free((void *)listp);
        }
and notice what would happen if the more-obvious loop iteration expression listp = listp->next
were used, without the temporary nextp pointer. 

References: K&R2 Sec. 7.8.5 p. 167 
ANSI Sec. 4.10.3 
ISO Sec. 7.10.3 
Rationale Sec. 4.10.3.2 
H&S Sec. 16.2 p. 387 
CT&P Sec. 7.10 p. 95 

Question 7.21

Why isn't a pointer null after calling free? 
How unsafe is it to use (assign, compare) a pointer value after it's been freed? 

When you call free, the memory pointed to by the passed pointer is freed, but the value of the
pointer in the caller remains unchanged, because C's pass-by-value semantics mean that called
functions never permanently change the values of their arguments. (See also question 4.8.) 

A pointer value which has been freed is, strictly speaking, invalid, and any use of it, even if is not
dereferenced can theoretically lead to trouble, though as a quality of implementation issue, most
implementations will probably not go out of their way to generate exceptions for innocuous uses
of invalid pointers. 

References: ANSI Sec. 4.10.3 
ISO Sec. 7.10.3 
Rationale Sec. 3.2.2.3 

Question 7.22

When I call malloc to allocate memory for a local pointer, do I have to explicitly free it? 



Yes. Remember that a pointer is different from what it points to. Local variables are deallocated
when the function returns, but in the case of a pointer variable, this means that the pointer is
deallocated,  not  what  it  points  to.  Memory allocated  with  malloc  always  persists  until  you
explicitly free it. In general, for every call to malloc, there should be a corresponding call to free

Question 7.23

I'm allocating structures which contain pointers to other dynamically-allocated objects. When I
free a structure, do I have to free each subsidiary pointer first? 

Yes. In general, you must arrange that each pointer returned from malloc be individually passed
to free, exactly once (if it is freed at all). 

A good rule of thumb is that for each call to malloc in a program, you should be able to point at
the call to free which frees the memory allocated by that malloc call. 

See also question 7.24. 

Question 7.24

Must I free allocated memory before the program exits? 

You shouldn't have to. A real operating system definitively reclaims all memory when a program
exits. Nevertheless, some personal computers are said not to reliably recover memory, and all that
can be inferred from the ANSI/ISO C Standard is that this is a ``quality of implementation issue.'' 

References: ANSI Sec. 4.10.3.2 
ISO Sec. 7.10.3.2 

Question 7.25

I have a program which mallocs and later frees a lot of memory, but memory usage (as reported
by ps) doesn't seem to go back down. 

Most implementations of malloc/free do not return freed memory to the operating system (if there
is one), but merely make it available for future malloc calls within the same program. 

Question 7.26

How does free know how many bytes to free? 

The malloc/free implementation remembers the size of each block allocated and returned, so it is
not necessary to remind it of the size when freeing. 

Question 7.27

So can I query the malloc package to find out how big an allocated block is? 

Not portably. 



Question 7.30

Is it legal to pass a null pointer as the first argument to realloc? Why would you want to? 

ANSI C sanctions this usage (and the related realloc(..., 0), which frees), although several earlier
implementations do not support it, so it may not be fully portable. Passing an initially-null pointer
to realloc can make it easier to write a self-starting incremental allocation algorithm. 

References: ANSI Sec. 4.10.3.4 
ISO Sec. 7.10.3.4 
H&S Sec. 16.3 p. 388 

Question 7.31

What's the difference between calloc and malloc? Is it safe to take advantage of calloc's zero-
filling? Does free work on memory allocated with calloc, or do you need a cfree? 

calloc(m, n) is essentially equivalent to 
p = malloc(m * n);
memset(p, 0, m * n);
The zero fill  is all-bits-zero, and does not therefore guarantee useful null  pointer values (see
section 5 of this  list)  or floating-point  zero values. free is  properly used to free the memory
allocated by calloc. 

References: ANSI Sec. 4.10.3 to 4.10.3.2 
ISO Sec. 7.10.3 to 7.10.3.2 
H&S Sec. 16.1 p. 386, Sec. 16.2 p. 386 
PCS Sec. 11 pp. 141,142 

Question 7.32

What is alloca and why is its use discouraged? 

alloca allocates  memory which is  automatically freed when the function which called alloca
returns. That is, memory allocated with alloca is local to a particular function's ``stack frame'' or
context. 

alloca  cannot  be  written  portably,  and  is  difficult  to  implement  on  machines  without  a
conventional stack. Its use is problematical (and the obvious implementation on a stack-based
machine fails) when its return value is passed directly to another function, as in fgets(alloca(100),
100, stdin). 

For these reasons, alloca is not Standard and cannot be used in programs which must be widely
portable, no matter how useful it might be. 

See also question 7.22. 

References: Rationale Sec. 4.10.3 

Question 8.1

Why doesn't 
strcat(string, '!');



work? 

There is a very real difference between characters and strings, and strcat concatenates strings. 

Characters in C are represented by small integers corresponding to their character set values (see
also question  8.6).  Strings are  represented by arrays of characters;  you usually manipulate  a
pointer to the first character of the array. It is never correct to use one when the other is expected.
To append a ! to a string, use 
        strcat(string, "!");
See also questions 1.32, 7.2, and 16.6. 

References: CT&P Sec. 1.5 pp. 9-10 

Question 8.2

I'm checking a string to see if it matches a particular value. Why isn't this code working? 
        char *string;
        ...
        if(string == "value") {
                /* string matches "value" */
                ...
        }

Strings in C are represented as arrays of characters, and C never manipulates (assigns, compares,
etc.) arrays as a whole. The == operator in the code fragment above compares two pointers--the
value of the pointer variable string and a pointer to the string literal "value"--to see if they are
equal,  that is,  if  they point  to the same place. They probably don't,  so the comparison never
succeeds. 

To compare two strings, you generally use the library function strcmp: 
        if(strcmp(string, "value") == 0) {
                /* string matches "value" */
                ...
        }

Question 8.3

If I can say 
        char a[] = "Hello, world!";
why can't I say 
        char a[14];
        a = "Hello, world!";

Strings are arrays, and you can't assign arrays directly. Use strcpy instead: 
        strcpy(a, "Hello, world!");
See also questions 1.32, 4.2, and 7.2. 

Question 8.6

How can I get the numeric (character set) value corresponding to a character, or vice versa? 

In C, characters are represented by small integers corresponding to their values (in the machine's



character set), so you don't need a conversion routine: if you have the character, you have its
value. 

Question 8.9

I think something's wrong with my compiler: I just noticed that sizeof('a') is 2, not 1 (i.e. not
sizeof(char)). 

Perhaps surprisingly, character constants in C are of type int, so sizeof('a') is sizeof(int) (though
it's different in C++). See also question 7.8. 

References: ANSI Sec. 3.1.3.4 
ISO Sec. 6.1.3.4 
H&S Sec. 2.7.3 p. 29 

Question 9.1

What is the right type to use for Boolean values in C? Why isn't it a standard type? Should I use
#defines or enums for the true and false values? 

C does not provide a standard Boolean type, in part because picking one involves a space/time
tradeoff which can best be decided by the programmer. (Using an int may be faster, while using
char may save data space. Smaller types may make the generated code bigger or slower, though,
if they require lots of conversions to and from int.) 

The choice between #defines and enumeration constants for the true/false values is arbitrary and
not terribly interesting (see also questions 2.22 and 17.10). Use any of 
        #define TRUE  1 #define YES 1
        #define FALSE 0 #define NO  0
        enum bool {false, true};        enum bool {no, yes};
or use raw 1 and 0, as long as you are consistent within one program or project. (An enumeration
may be preferable if your debugger shows the names of enumeration constants when examining
variables.) 

Some people prefer variants like 
        #define TRUE (1==1)
        #define FALSE (!TRUE)
or define ``helper'' macros such as 
        #define Istrue(e) ((e) != 0)
These don't buy anything (see question 9.2; see also questions 5.12 and 10.2). Question 9.2

Isn't #defining TRUE to be 1 dangerous, since any nonzero value is considered ``true'' in C? What
if a built-in logical or relational operator ``returns'' something other than 1? 

It is true (sic) that any nonzero value is considered true in C, but this applies only ``on input'', i.e.
where a Boolean value is expected. When a Boolean value is generated by a built-in operator, it is
guaranteed to be 1 or 0. Therefore, the test 
        if((a == b) == TRUE)
would work as expected (as long as TRUE is 1), but it is obviously silly. In general, explicit tests
against TRUE and FALSE are inappropriate, because some library functions (notably isupper,
isalpha,  etc.) return, on success,  a nonzero value which is not necessarily 1. (Besides, if you



believe that ``if((a == b) == TRUE)'' is an improvement over ``if(a == b)'', why stop there? Why
not use ``if(((a == b) == TRUE) == TRUE)''?) A good rule of thumb is to use TRUE and FALSE
(or the like) only for assignment to a Boolean variable or function parameter, or as the return
value from a Boolean function, but never in a comparison. 

The  preprocessor  macros  TRUE  and  FALSE  (and,  of  course,  NULL)  are  used  for  code
readability, not because the underlying values might ever change. (See also questions 5.3 and
5.10.) 

On  the  other  hand,  Boolean  values  and  definitions  can  evidently  be  confusing,  and  some
programmers  feel  that  TRUE  and  FALSE macros  only compound  the  confusion.  (See  also
question 5.9.) 

References: K&R1 Sec. 2.6 p. 39, Sec. 2.7 p. 41 
K&R2 Sec. 2.6 p. 42, Sec. 2.7 p. 44, Sec. A7.4.7 p. 204, Sec. A7.9 p. 206 
ANSI Sec. 3.3.3.3, Sec. 3.3.8, Sec. 3.3.9, Sec. 3.3.13, Sec. 3.3.14, Sec. 3.3.15, Sec. 3.6.4.1, Sec.
3.6.5 
ISO Sec. 6.3.3.3, Sec. 6.3.8, Sec. 6.3.9, Sec. 6.3.13, Sec. 6.3.14, Sec. 6.3.15, Sec. 6.6.4.1, Sec.
6.6.5 
H&S Sec. 7.5.4 pp. 196-7, Sec. 7.6.4 pp. 207-8, Sec. 7.6.5 pp. 208-9, Sec. 7.7 pp. 217-8, Sec. 7.8
pp. 218-9, Sec. 8.5 pp. 238-9, Sec. 8.6 pp. 241-4 
``What the Tortoise Said to Achilles'' 

Question 9.3

Is if(p), where p is a pointer, a valid conditional? 

Yes. See question 5.3. 

Question 10.2

Here are some cute preprocessor macros: 
        #define begin   {
        #define end     }
What do y'all think? 

Bleah. See also section 17. 

Question 10.3

How can I write a generic macro to swap two values? 

There is no good answer to this question. If the values are integers, a well-known trick using
exclusive-OR could perhaps be used, but it will not work for floating-point values or pointers, or
if the two values are the same variable (and the ``obvious'' supercompressed implementation for
integral types a^=b^=a^=b is illegal due to multiple side-effects; see question 3.2). If the macro is
intended to be used on values of arbitrary type (the usual goal), it cannot use a temporary, since it
does not know what type of temporary it needs (and would have a hard time naming it if it did),
and standard C does not provide a typeof operator. 

The best all-around solution is probably to forget about using a macro, unless you're willing to
pass in the type as a third argument. 



Question 10.4

What's the best way to write a multi-statement macro? 

The usual goal is to write a macro that can be invoked as if it were a statement consisting of a
single function call. This means that the ``caller'' will be supplying the final semicolon, so the
macro body should not. The macro body cannot therefore be a simple brace-enclosed compound
statement, because syntax errors would result if it were invoked (apparently as a single statement,
but with a resultant extra semicolon) as the if branch of an if/else statement with an explicit else
clause. 

The traditional solution, therefore, is to use 
        #define MACRO(arg1, arg2) do {  \
                /* declarations */      \
                stmt1;                  \
                stmt2;                  \
                /* ... */               \
                } while(0)      /* (no trailing ; ) */
When the caller appends a semicolon, this expansion becomes a single statement regardless of
context.  (An optimizing  compiler  will  remove any ``dead''  tests  or  branches  on the constant
condition 0, although lint may complain.) 

If all of the statements in the intended macro are simple expressions, with no declarations or
loops, another technique is to write a single, parenthesized expression using one or more comma
operators. (For an example, see the first DEBUG() macro in question 10.26.) This technique also
allows a value to be ``returned.'' 

References: H&S Sec. 3.3.2 p. 45 
CT&P Sec. 6.3 pp. 82-3 

Question 10.6

I'm splitting up a program into multiple source files for the first time, and I'm wondering what to
put in .c files and what to put in .h files. (What does ``.h'' mean, anyway?) 

As a general rule, you should put these things in header (.h) files: 
macro definitions (preprocessor #defines)
structure, union, and enumeration declarations
typedef declarations
external function declarations (see also question 1.11)
global variable declarations
It's especially important to put a declaration or definition in a header file when it will be shared
between several other files. (In particular, never put external function prototypes in .c files. See
also question 1.7.) 

On the other hand, when a definition or declaration should remain private to one source file, it's
fine to leave it there. 

See also questions 1.7 and 10.7. 

References: K&R2 Sec. 4.5 pp. 81-2 
H&S Sec. 9.2.3 p. 267 
CT&P Sec. 4.6 pp. 66-7 



Question 10.7

Is it acceptable for one header file to #include another? 

It's a question of style, and thus receives considerable debate. Many people believe that ``nested
#include files''  are to  be avoided: the prestigious Indian Hill  Style Guide (see question 17.9)
disparages them; they can make it harder to find relevant definitions; they can lead to multiple-
definition errors if a file is #included twice; and they make manual Makefile maintenance very
difficult. On the other hand, they make it possible to use header files in a modular way (a header
file can #include what it needs itself, rather than requiring each #includer to do so); a tool like
grep (or a tags file) makes it easy to find definitions no matter where they are; a popular trick
along the lines of: 
        #ifndef HFILENAME_USED
        #define HFILENAME_USED
        ...header file contents...
        #endif
(where  a  different  bracketing macro  name is  used  for  each header  file)  makes  a  header  file
``idempotent''  so  that  it  can  safely  be  #included  multiple  times;  and  automated  Makefile
maintenance tools (which are a virtual necessity in large projects anyway; see question 18.1)
handle dependency generation in the face of nested #include files easily. See also question 17.10. 

References: Rationale Sec. 4.1.2 

Question 10.8

Where are header (``#include'') files searched for? 

The  exact  behavior  is  implementation-defined  (which  means  that  it  is  supposed  to  be
documented; see question 11.33). Typically, headers named with <> syntax are searched for in
one or more standard places. Header files named with "" syntax are first  searched for in  the
``current directory,'' then (if not found) in the same standard places. 

Traditionally (especially under Unix compilers), the current directory is taken to be the directory
containing the file containing the #include directive. Under other compilers, however, the current
directory (if  any)  is  the  directory in  which  the  compiler  was  initially  invoked.  Check  your
compiler documentation. 

References: K&R2 Sec. A12.4 p. 231 
ANSI Sec. 3.8.2 
ISO Sec. 6.8.2 
H&S Sec. 3.4 p. 55 

Question 10.9

I'm getting strange syntax errors on the very first declaration in a file, but it looks fine. 

Perhaps there's a missing semicolon at the end of the last declaration in the last header file you're
#including. See also questions 2.18 and 11.29. 

Question 10.11

I seem to be missing the system header file <sgtty.h>. Can someone send me a copy? 



Standard headers exist in part so that definitions appropriate to your compiler, operating system,
and processor can be supplied. You cannot just pick up a copy of someone else's header file and
expect it to work, unless that person is using exactly the same environment. Ask your compiler
vendor why the file was not provided (or to send a replacement copy). 

Question 10.12

How can I construct preprocessor #if expressions which compare strings? 

You can't do it directly; preprocessor #if arithmetic uses only integers. You can #define several
manifest constants, however, and implement conditionals on those. 

See also question 20.17. 

References: K&R2 Sec. 4.11.3 p. 91 
ANSI Sec. 3.8.1 
ISO Sec. 6.8.1 
H&S Sec. 7.11.1 p. 225 

Question 10.13

Does the sizeof operator work in preprocessor #if directives? 

No. Preprocessing happens during an earlier phase of compilation, before type names have been
parsed.  Instead  of  sizeof,  consider  using  the  predefined  constants  in  ANSI's  <limits.h>,  if
applicable,  or perhaps a ``configure''  script.  (Better yet, try to  write code which is inherently
insensitive to type sizes.) 

References: ANSI Sec. 2.1.1.2, Sec. 3.8.1 footnote 83 
ISO Sec. 5.1.1.2, Sec. 6.8.1 
H&S Sec. 7.11.1 p. 225 

Question 10.14

Can I use an #ifdef in a #define line, to define something two different ways? 

No. You can't ``run the preprocessor on itself,'' so to speak. What you can do is use one of two
completely separate #define lines, depending on the #ifdef setting. 

References: ANSI Sec. 3.8.3, Sec. 3.8.3.4 
ISO Sec. 6.8.3, Sec. 6.8.3.4 
H&S Sec. 3.2 pp. 40-1 

Question 10.15

Is there anything like an #ifdef for typedefs? 

Unfortunately, no. (See also question 10.13.) 

References: ANSI Sec. 2.1.1.2, Sec. 3.8.1 footnote 83 



ISO Sec. 5.1.1.2, Sec. 6.8.1 
H&S Sec. 7.11.1 p. 225 

Question 10.16

How can I use a preprocessor #if expression to tell if a machine is big-endian or little-endian? 

You probably can't. (Preprocessor arithmetic uses only long integers, and there is no concept of
addressing. ) Are you sure you need to know the machine's endianness explicitly? Usually it's
better to write code which doesn't care ). See also question 20.9. 

References: ANSI Sec. 3.8.1 
ISO Sec. 6.8.1 
H&S Sec. 7.11.1 p. 225 

Question 10.18

I inherited some code which contains far too many #ifdef's for my taste. How can I preprocess the
code to leave only one conditional compilation set, without running it through the preprocessor
and expanding all of the #include's and #define's as well? 

There are programs floating around called unifdef, rmifdef, and scpp (``selective C preprocessor'')
which do exactly this. See question 18.16. 

Question 10.19

How can I list all of the pre#defined identifiers? 

There's  no  standard  way,  although  it  is  a  common  need.  If  the  compiler  documentation  is
unhelpful, the most expedient way is probably to extract printable strings from the compiler or
preprocessor  executable  with  something  like  the  Unix  strings  utility.  Beware  that  many
traditional system-specific pre#defined identifiers (e.g. ``unix'') are non-Standard (because they
clash with the user's namespace) and are being removed or renamed. 

Question 10.20

I have some old code that tries to construct identifiers with a macro like 
#define Paste(a, b) a/**/b
but it doesn't work any more. 

It  was  an  undocumented  feature  of  some  early  preprocessor  implementations  (notably John
Reiser's) that comments disappeared entirely and could therefore be used for token pasting. ANSI
affirms (as did K&R1) that comments are replaced with white space. However, since the need for
pasting  tokens  was  demonstrated  and  real,  ANSI  introduced  a  well-defined  token-pasting
operator, ##, which can be used like this: 
        #define Paste(a, b) a##b
See also question 11.17. 

References: ANSI Sec. 3.8.3.3 



ISO Sec. 6.8.3.3 
Rationale Sec. 3.8.3.3 
H&S Sec. 3.3.9 p. 52 

Question 10.22

Why is the macro 
        #define TRACE(n) printf("TRACE: %d\n", n)
giving me the warning ``macro replacement within a string literal''? It seems to be expanding 
        TRACE(count);
as 
        printf("TRACE: %d\count", count);

See question 11.18. 

Question 10.23

How can I use a macro argument inside a string literal in the macro expansion? 

See question 11.18. 

Question 10.25

I've got this tricky preprocessing I want to do and I can't figure out a way to do it. 

C's preprocessor is not intended as a general-purpose tool. (Note also that it is not guaranteed to
be  available  as  a  separate  program.)  Rather  than  forcing  it  to  do  something  inappropriate,
consider writing your own little special-purpose preprocessing tool, instead. You can easily get a
utility like make(1) to run it for you automatically. 

If  you  are  trying  to  preprocess  something  other  than  C,  consider  using  a  general-purpose
preprocessor. (One older one available on most Unix systems is m4.)

Question 10.26

How can I write a macro which takes a variable number of arguments? 

One popular trick is to define and invoke the macro with a single, parenthesized ``argument''
which  in  the  macro  expansion  becomes  the  entire  argument  list,  parentheses  and  all,  for  a
function such as printf: 
        #define DEBUG(args) (printf("DEBUG: "), printf args)
        if(n != 0) DEBUG(("n is %d\n", n));
The obvious disadvantage is that the caller must always remember to use the extra parentheses. 

gcc  has  an  extension  which  allows  a  function-like  macro  to  accept  a  variable  number  of
arguments, but it's not standard. Other possible solutions are to use different macros (DEBUG1,
DEBUG2, etc.) depending on the number of arguments, to play games with commas: 
        #define DEBUG(args) (printf("DEBUG: "), printf(args))
        #define _ ,



        DEBUG("i = %d" _ i)
It is often better to use a bona-fide function, which can take a variable number of arguments in a
well-defined way. See questions 15.4 and 15.5. 

Question 11.1

What is the ``ANSI C Standard?'' 

In 1983, the American National Standards Institute (ANSI) commissioned a committee, X3J11,
to standardize the C language. After a long, arduous process, including several widespread public
reviews, the committee's work was finally ratified as ANS X3.159-1989 on December 14, 1989,
and published in the spring of 1990. For the most part, ANSI C standardizes existing practice,
with a few additions from C++ (most notably function prototypes) and support for multinational
character  sets  (including  the  controversial  trigraph  sequences).  The  ANSI  C  standard  also
formalizes the C run-time library support routines. 

More recently, the Standard has been adopted as an international standard, ISO/IEC 9899:1990,
and this ISO Standard replaces the earlier X3.159 even within the United States. Its sections are
numbered differently (briefly, ISO sections 5 through 7 correspond roughly to the old ANSI
sections 2 through 4). As an ISO Standard, it is subject to ongoing revision through the release of
Technical Corrigenda and Normative Addenda. 

In 1994, Technical Corrigendum 1 amended the Standard in about 40 places, most of them minor
corrections or clarifications. More recently, Normative Addendum 1 added about 50 pages of new
material,  mostly  specifying  new library functions  for  internationalization.  The  production  of
Technical  Corrigenda  is  an  ongoing process,  and  a  second  one  is  expected  in  late  1995.  In
addition, both ANSI and ISO require periodic review of their standards. This process is beginning
in  1995,  and  will  likely result  in  a  completely revised  standard  (nicknamed  ``C9X''  on  the
assumption of completion by 1999). 

The  original  ANSI  Standard  included  a  ``Rationale,''  explaining  many of  its  decisions,  and
discussing a number of subtle points, including several of those covered here. (The Rationale was
``not  part  of  ANSI  Standard  X3.159-1989,  but...  included  for  information  only,''  and  is  not
included with the ISO Standard.) 

Question 11.2

How can I get a copy of the Standard? 

[Late-breaking news: I've been told that copies of the new C99 can be obtained directly from
www.ansi.org; the price for an electronic document is only US $18.00.] 

Copies are available in the United States from 
American National Standards Institute
11 W. 42nd St., 13th floor
New York, NY  10036  USA
(+1) 212 642 4900

and 
Global Engineering Documents
15 Inverness Way E
Englewood, CO  80112  USA
(+1) 303 397 2715
(800) 854 7179  (U.S. & Canada)



In other countries, contact the appropriate national standards body, or ISO in Geneva at: 
ISO Sales
Case Postale 56
CH-1211 Geneve 20
Switzerland
(or see URL http://www.iso.ch or check the comp.std.internat FAQ list, Standards.Faq). 

At the time of this writing, the cost is $130.00 from ANSI or $410.00 from Global. Copies of the
original X3.159 (including the Rationale) may still be available at $205.00 from ANSI or $162.50
from Global. Note that ANSI derives revenues to support its operations from the sale of printed
standards, so electronic copies are not available. 

In  the  U.S.,  it  may be  possible  to  get  a  copy of  the  original  ANSI  X3.159  (including  the
Rationale) as ``FIPS PUB 160'' from 
        National Technical Information Service (NTIS)
        U.S. Department of Commerce
        Springfield, VA  22161
        703 487 4650
The mistitled Annotated ANSI C Standard, with annotations by Herbert Schildt, contains most of
the text of ISO 9899; it is published by Osborne/McGraw-Hill, ISBN 0-07-881952-0, and sells in
the U.S. for approximately $40. It has been suggested that the price differential between this work
and the official  standard reflects  the value of the annotations: they are plagued by numerous
errors and omissions, and a few pages of the Standard itself are missing. Many people on the net
recommend  ignoring  the  annotations  entirely.  A  review  of  the  annotations  (``annotated
annotations'') by Clive Feather can be found on the web at http://www.lysator.liu.se/c/schildt.html
. 

The  text  of  the  Rationale  (not  the  full  Standard)  can  be  obtained  by  anonymous  ftp  from
ftp.uu.net (see question 18.16) in directory doc/standards/ansi/X3.159-1989, and is also available
on the web at http://www.lysator.liu.se/c/rat/title.html . The Rationale has also been printed by
Silicon Press, ISBN 0-929306-07-4. 

Question 11.3

My ANSI compiler complains about a mismatch when it sees 
        extern int func(float);
        int func(x)
        float x;
        { ...

You have mixed the new-style prototype declaration ``extern int func(float);'' with the old-style
definition ``int func(x) float x;''. It is usually safe to mix the two styles (see question 11.4), but
not in this case. 

Old C (and ANSI C, in the absence of prototypes, and in variable-length argument lists; see
question 15.2) ``widens'' certain arguments when they are passed to functions. floats are promoted
to  double,  and  characters  and  short  integers  are  promoted  to  int.  (For  old-style  function
definitions,  the values  are automatically converted back to  the  corresponding narrower  types
within the body of the called function, if they are declared that way there.) 

This problem can be fixed either by using new-style syntax consistently in the definition: 
        int func(float x) { ... }
or by changing the new-style prototype declaration to match the old-style definition: 
        extern int func(double);
(In this case, it would be clearest to change the old-style definition to use double as well, as long



as the address of that parameter is not taken.) 

It may also be safer to avoid ``narrow'' (char, short int, and float) function arguments and return
types altogether. 

See also question 1.25. 

References: K&R1 Sec. A7.1 p. 186 
K&R2 Sec. A7.3.2 p. 202 
ANSI Sec. 3.3.2.2, Sec. 3.5.4.3 
ISO Sec. 6.3.2.2, Sec. 6.5.4.3 
Rationale Sec. 3.3.2.2, Sec. 3.5.4.3 
H&S Sec. 9.2 pp. 265-7, Sec. 9.4 pp. 272-3 

Question 11.4

Can you mix old-style and new-style function syntax? 

Doing so is perfectly legal, as long as you're careful (see especially question 11.3). Note however
that old-style syntax is marked as obsolescent, so official support for it may be removed some
day. 

References: ANSI Sec. 3.7.1, Sec. 3.9.5 
ISO Sec. 6.7.1, Sec. 6.9.5 
H&S Sec. 9.2.2 pp. 265-7, Sec. 9.2.5 pp. 269-70 

Question 11.5

Why does the declaration 
extern f(struct x *p);
give me an obscure warning message about ``struct x introduced in prototype scope''? 

In a quirk of C's normal block scoping rules, a structure declared (or even mentioned) for the first
time within a prototype cannot be compatible with other structures declared in the same source
file (it goes out of scope at the end of the prototype). 

To resolve the problem, precede the prototype with the vacuous-looking declaration 
        struct x;
which  places  an  (incomplete)  declaration  of  struct  x  at  file  scope,  so  that  all  following
declarations involving struct x can at least be sure they're referring to the same struct x. 

References: ANSI Sec. 3.1.2.1, Sec. 3.1.2.6, Sec. 3.5.2.3 
ISO Sec. 6.1.2.1, Sec. 6.1.2.6, Sec. 6.5.2.3 

Question 11.8

I don't understand why I can't use const values in initializers and array dimensions, as in 
        const int n = 5;
        int a[n];

The const qualifier really means ``read-only;'' an object so qualified is a run-time object which
cannot (normally) be assigned to. The value of a const-qualified object is therefore not a constant
expression in the full sense of the term. (C is unlike C++ in this regard.) When you need a true



compile-time constant, use a preprocessor #define. 

References: ANSI Sec. 3.4 
ISO Sec. 6.4 
H&S Secs. 7.11.2,7.11.3 pp. 226-7 

Question 11.9

What's the difference between const char *p and char * const p? 

const char *p declares a pointer to a constant character (you can't change the character); char *
const p declares a constant pointer to a (variable) character (i.e. you can't change the pointer). 

Read these ``inside out'' to understand them; see also question 1.21. 

References: ANSI Sec. 3.5.4.1 examples 
ISO Sec. 6.5.4.1 
Rationale Sec. 3.5.4.1 
H&S Sec. 4.4.4 p. 81 

Question 11.10

Why can't I pass a char ** to a function which expects a const char **? 

You can use a pointer-to-T (for any type T) where a pointer-to-const-T is expected. However, the
rule (an explicit  exception) which permits  slight mismatches in qualified pointer types is  not
applied recursively, but only at the top level. 

You must use explicit casts (e.g. (const char **) in this case) when assigning (or passing) pointers
which have qualifier mismatches at other than the first level of indirection. 

References: ANSI Sec. 3.1.2.6, Sec. 3.3.16.1, Sec. 3.5.3 
ISO Sec. 6.1.2.6, Sec. 6.3.16.1, Sec. 6.5.3 
H&S Sec. 7.9.1 pp. 221-2 

Question 11.12

Can I declare main as void, to shut off these annoying ``main returns no value'' messages? 

No. main must be declared as returning an int, and as taking either zero or two arguments, of the
appropriate types.  If you're calling exit()  but still  getting warnings,  you may have to insert  a
redundant return statement (or use some kind of ``not reached'' directive, if available). 

Declaring a function as void does not merely shut off or rearrange warnings: it may also result in
a different function call/return sequence, incompatible with what the caller (in main's case, the C
run-time startup code) expects. 

(Note that this discussion of main pertains only to ``hosted'' implementations; none of it applies
to  ``freestanding''  implementations,  which  may  not  even  have  main.  However,  freestanding
implementations are comparatively rare, and if you're using one, you probably know it. If you've
never heard of the distinction, you're probably using a hosted implementation, and the above rules
apply.) 

References: ANSI Sec. 2.1.2.2.1, Sec. F.5.1 



ISO Sec. 5.1.2.2.1, Sec. G.5.1 
H&S Sec. 20.1 p. 416 
CT&P Sec. 3.10 pp. 50-51 

Question 11.13

But what about main's third argument, envp? 

It's a non-standard (though common) extension. If you really need to access the environment in
ways beyond what the standard getenv function provides, though, the global variable environ is
probably a better avenue (though it's equally non-standard). 

References: ANSI Sec. F.5.1 
ISO Sec. G.5.1 
H&S Sec. 20.1 pp. 416-7 

Question 11.14

I believe that declaring void main() can't  fail, since I'm calling exit  instead of returning, and
anyway my operating system ignores a program's exit/return status. 

It doesn't matter whether main returns or not, or whether anyone looks at the status; the problem
is that when main is misdeclared, its caller (the runtime startup code) may not even be able to call
it correctly (due to the potential clash of calling conventions; see question 11.12). Your operating
system may ignore the exit status, and void main() may work for you, but it is not portable and
not correct

Question 11.15

The book I've been using, C Programing for the Compleat Idiot, always uses void main(). 

Perhaps its author counts himself among the target audience. Many books unaccountably use void
main() in examples. They're wrong. 

Question 11.16

Is exit(status) truly equivalent to returning the same status from main? 

Yes and no. The Standard says that they are equivalent. However, a few older, nonconforming
systems may have problems with one or the other form. Also, a return from main cannot be
expected to work if data local to main might be needed during cleanup; see also question 16.4.
(Finally, the two forms are obviously not equivalent in a recursive call to main.) 

References: K&R2 Sec. 7.6 pp. 163-4 
ANSI Sec. 2.1.2.2.3 
ISO Sec. 5.1.2.2.3 

Question 11.17

I'm trying to  use  the  ANSI  ``stringizing''  preprocessing  operator  `#'  to  insert  the  value  of  a



symbolic constant into a message, but it keeps stringizing the macro's name rather than its value. 

You can use something like the following two-step procedure to force a macro to be expanded as
well as stringized: 
        #define Str(x) #x
        #define Xstr(x) Str(x)
        #define OP plus
        char *opname = Xstr(OP);
This code sets opname to "plus" rather than "OP". 

An equivalent circumlocution is necessary with the token-pasting operator ## when the values
(rather than the names) of two macros are to be concatenated. 

References: ANSI Sec. 3.8.3.2, Sec. 3.8.3.5 example 
ISO Sec. 6.8.3.2, Sec. 6.8.3.5 

Question 11.18

What does the message ``warning: macro replacement within a string literal'' mean? 

Some pre-ANSI compilers/preprocessors interpreted macro definitions like 
        #define TRACE(var, fmt) printf("TRACE: var = fmt\n", var)
such that invocations like 
        TRACE(i, %d);
were expanded as 
        printf("TRACE: i = %d\n", i);
In  other  words,  macro  parameters  were  expanded  even  inside  string  literals  and  character
constants. 

Macro expansion is not defined in this way by K&R or by Standard C. When you do want to turn
macro arguments into strings, you can use the new # preprocessing operator, along with string
literal concatenation (another new ANSI feature): 
        #define TRACE(var, fmt) \
                printf("TRACE: " #var " = " #fmt "\n", var)
See also question 11.17. 

References: H&S Sec. 3.3.8 p. 51 

Question 11.19

I'm getting strange syntax errors inside lines I've #ifdeffed out. 

Under ANSI C, the text inside a ``turned off'' #if, #ifdef, or #ifndef must still consist of ``valid
preprocessing  tokens.''  This  means  that  there  must  be  no  newlines  inside  quotes,  and  no
unterminated comments or quotes (note particularly that an apostrophe within a contracted word
looks  like  the  beginning of a  character constant).  Therefore,  natural-language comments  and
pseudocode should always be written between the ``official'' comment delimiters /* and */. (But
see question 20.20, and also 10.25.) 

References: ANSI Sec. 2.1.1.2, Sec. 3.1 
ISO Sec. 5.1.1.2, Sec. 6.1 
H&S Sec. 3.2 p. 40 



Question 11.20

What are #pragmas and what are they good for? 

The #pragma directive provides a single, well-defined ``escape hatch'' which can be used for all
sorts  of  implementation-specific  controls  and  extensions:  source  listing  control,  structure
packing, warning suppression (like lint's old /* NOTREACHED */ comments), etc. 

References: ANSI Sec. 3.8.6 
ISO Sec. 6.8.6 
H&S Sec. 3.7 p. 61 

Question 11.21

What does ``#pragma once'' mean? I found it in some header files. 

It is an extension implemented by some preprocessors to help make header files idempotent; it is
essentially equivalent to the #ifndef trick mentioned in question 10.7. 

Question 11.22

Is char a[3] = "abc"; legal? What does it mean? 

It  is  legal  in  ANSI C (and perhaps  in  a  few pre-ANSI systems),  though useful  only in  rare
circumstances. It declares an array of size three, initialized with the three characters 'a', 'b', and 'c',
without the usual terminating '\0' character. The array is therefore not a true C string and cannot
be used with strcpy, printf %s, etc. 

Most of the time, you should let the compiler count the initializers when initializing arrays (in the
case of the initializer "abc", of course, the computed size will be 4). 

References: ANSI Sec. 3.5.7 
ISO Sec. 6.5.7 
H&S Sec. 4.6.4 p. 98 

Question 11.24

Why can't I perform arithmetic on a void * pointer? 

The compiler  doesn't  know the  size  of  the  pointed-to  objects.  Before  performing arithmetic,
convert the pointer either to char * or to the pointer type you're trying to manipulate (but see also
question 4.5). 

References: ANSI Sec. 3.1.2.5, Sec. 3.3.6 
ISO Sec. 6.1.2.5, Sec. 6.3.6 
H&S Sec. 7.6.2 p. 204 

Question 11.25

What's the difference between memcpy and memmove? 



memmove offers guaranteed behavior if the source and destination arguments overlap. memcpy
makes no such guarantee, and may therefore be more efficiently implementable. When in doubt,
it's safer to use memmove. 

References: K&R2 Sec. B3 p. 250 
ANSI Sec. 4.11.2.1, Sec. 4.11.2.2 
ISO Sec. 7.11.2.1, Sec. 7.11.2.2 
Rationale Sec. 4.11.2 
H&S Sec. 14.3 pp. 341-2 
PCS Sec. 11 pp. 165-6 

Question 11.26

What should malloc(0) do? Return a null pointer or a pointer to 0 bytes? 

The ANSI/ISO Standard says that it may do either; the behavior is implementation-defined (see
question 11.33). 

References: ANSI Sec. 4.10.3 
ISO Sec. 7.10.3 
PCS Sec. 16.1 p. 386 

Question 11.27

Why does the ANSI Standard not guarantee more than six case-insensitive characters of external
identifier significance? 

The problem is older linkers which are under the control of neither the ANSI/ISO Standard nor
the C compiler developers on the systems which have them. The limitation is only that identifiers
be significant in the first six characters, not that they be restricted to six characters in length. This
limitation  is  annoying,  but  certainly  not  unbearable,  and  is  marked  in  the  Standard  as
``obsolescent,'' i.e. a future revision will likely relax it. 

This concession to current, restrictive linkers really had to be made, no matter how vehemently
some  people  oppose  it.  (The  Rationale  notes  that  its  retention  was  ``most  painful.'')  If  you
disagree, or have thought of a trick by which a compiler burdened with a restrictive linker could
present the C programmer with the appearance of more significance in external identifiers, read
the excellently-worded section 3.1.2 in the X3.159 Rationale (see question 11.1), which discusses
several such schemes and explains why they could not be mandated. 

References: ANSI Sec. 3.1.2, Sec. 3.9.1 
ISO Sec. 6.1.2, Sec. 6.9.1 
Rationale Sec. 3.1.2 
H&S Sec. 2.5 pp. 22-3 

Question 11.29

My compiler is rejecting the simplest possible test programs, with all kinds of syntax errors. 

Perhaps it is a pre-ANSI compiler, unable to accept function prototypes and the like. 

See also questions 1.31, 10.9, and 11.30. 



Question 11.30

Why are some ANSI/ISO Standard library routines showing up as undefined, even though I've got
an ANSI compiler? 

It's possible to have a compiler available which accepts ANSI syntax, but not to have ANSI-
compatible header files or run-time libraries installed. (In fact, this situation is rather common
when using a non-vendor-supplied compiler such as gcc.) See also questions 11.29, 13.25, and
13.26. 

Question 11.31

Does anyone have a tool for converting old-style C programs to ANSI C, or vice versa, or for
automatically generating prototypes? 

Two programs, protoize and unprotoize, convert back and forth between prototyped and ``old
style'' function definitions and declarations. (These programs do not handle full-blown translation
between ``Classic''  C and ANSI C.)  These  programs are part  of the FSF's  GNU C compiler
distribution; see question 18.3. 

The unproto program (/pub/unix/unproto5.shar.Z on ftp.win.tue.nl) is a filter which sits between
the preprocessor and the next compiler pass, converting most of ANSI C to traditional C on-the-
fly. 

The GNU GhostScript package comes with a little program called ansi2knr. 

Before converting ANSI C back to old-style, beware that such a conversion cannot always be
made both safely and automatically. ANSI C introduces new features and complexities not found
in K&R C. You'll especially need to be careful of prototyped function calls; you'll probably need
to insert explicit casts. See also questions 11.3 and 11.29. 

Several prototype generators exist,  many as modifications to lint. A program called CPROTO
was posted to comp.sources.misc in March, 1992. There is another program called ``cextract.''
Many vendors supply simple utilities like these with their compilers. See also question 18.16.
(But be  careful  when generating prototypes for  old functions  with  ``narrow''  parameters;  see
question 11.3.) 

Finally, are  you sure you really need to  convert  lots  of old  code  to  ANSI C?  The old-style
function  syntax  is  still  acceptable,  and  a  hasty  conversion  can  easily  introduce  bugs.  (See
question 11.3.) 

Question 11.32

Why won't the Frobozz Magic C Compiler,  which claims to be ANSI compliant,  accept  this
code? I know that the code is ANSI, because gcc accepts it. 

Many compilers support a few non-Standard extensions, gcc more so than most. Are you sure
that the code being rejected doesn't rely on such an extension? It is usually a bad idea to perform
experiments  with a  particular  compiler  to  determine properties  of a  language;  the  applicable
standard may permit variations, or the compiler may be wrong. See also question 11.35. 



Question 11.33

People seem to make a point of distinguishing between implementation-defined, unspecified, and
undefined behavior. What's the difference? 

Briefly: implementation-defined means that an implementation must choose some behavior and
document it. Unspecified means that an implementation should choose some behavior, but need
not document it. Undefined means that absolutely anything might happen. In no case does the
Standard impose requirements; in the first two cases it occasionally suggests (and may require a
choice from among) a small set of likely behaviors. 

Note that since the Standard imposes no requirements on the behavior of a compiler faced with
an instance of undefined behavior, the compiler can do absolutely anything. In particular, there is
no guarantee that the rest of the program will perform normally. It's perilous to think that you can
tolerate undefined behavior in a program; see question 3.2 for a relatively simple example. 

If you're interested in writing portable code, you can ignore the distinctions, as you'll want to
avoid code that depends on any of the three behaviors. 

See also questions 3.9, and 11.34. 

References: ANSI Sec. 1.6 
ISO Sec. 3.10, Sec. 3.16, Sec. 3.17 
Rationale Sec. 1.6 

Question 11.34

I'm appalled that the ANSI Standard leaves so many issues undefined. Isn't a Standard's whole job
to standardize these things? 

It  has  always been  a  characteristic  of  C  that  certain  constructs  behaved  in  whatever  way a
particular compiler or a particular piece of hardware chose to implement them. This deliberate
imprecision often allows compilers to generate more efficient code for common cases, without
having to burden all programs with extra code to assure well-defined behavior of cases deemed to
be less reasonable. Therefore, the Standard is simply codifying existing practice. 

A programming language standard can be thought of as a treaty between the language user and
the compiler implementor. Parts of that treaty consist of features which the compiler implementor
agrees to provide, and which the user may assume will be available. Other parts, however, consist
of  rules  which  the  user  agrees  to  follow  and  which  the  implementor  may  assume  will  be
followed. As long as both sides uphold their guarantees, programs have a fighting chance of
working correctly. If either side reneges on any of its  commitments,  nothing is guaranteed to
work. 

See also question 11.35. 

References: Rationale Sec. 1.1 

Question 11.35

People keep saying that the behavior of i = i++ is undefined, but I just tried it  on an ANSI-
conforming compiler, and got the results I expected. 



A compiler may do anything it likes when faced with undefined behavior (and, within limits, with
implementation-defined and unspecified behavior), including doing what you expect. It's unwise
to depend on it, though. See also questions 11.32, 11.33, and 11.34. 

Question 12.1

What's wrong with this code? 
char c;
while((c = getchar()) != EOF) ...

For one thing, the variable to hold getchar's return value must be an int. getchar can return all
possible character values, as well as EOF. By passing getchar's return value through a char, either
a normal character might be misinterpreted as EOF, or the EOF might be altered (particularly if
type char is unsigned) and so never seen. 

References: K&R1 Sec. 1.5 p. 14 
K&R2 Sec. 1.5.1 p. 16 
ANSI Sec. 3.1.2.5, Sec. 4.9.1, Sec. 4.9.7.5 
ISO Sec. 6.1.2.5, Sec. 7.9.1, Sec. 7.9.7.5 
H&S Sec. 5.1.3 p. 116, Sec. 15.1, Sec. 15.6 
CT&P Sec. 5.1 p. 70 
PCS Sec. 11 p. 157 

Question 12.2

Why does the code while(!feof(infp)) { fgets(buf, MAXLINE, infp); fputs(buf, outfp); } copy the
last line twice? 

In C, EOF is only indicated after an input routine has tried to read, and has reached end-of-file.
(In other words, C's I/O is not like Pascal's.) Usually, you should just check the return value of the
input routine (fgets in this case); often, you don't need to use feof at all. 

References: K&R2 Sec. 7.6 p. 164 
ANSI Sec. 4.9.3, Sec. 4.9.7.1, Sec. 4.9.10.2 
ISO Sec. 7.9.3, Sec. 7.9.7.1, Sec. 7.9.10.2 
H&S Sec. 15.14 p. 382 

Question 12.4

My program's prompts and intermediate output don't always show up on the screen, especially
when I pipe the output through another program. 

It's best to use an explicit fflush(stdout) whenever output should definitely be visible. Several
mechanisms attempt to perform the fflush for you, at the ``right time,'' but they tend to apply only
when stdout is an interactive terminal. (See also question 12.24.) 

References: ANSI Sec. 4.9.5.2 
ISO Sec. 7.9.5.2 

Question 12.5

How can I read one character at a time, without waiting for the RETURN key? 



See question 19.1. 

Question 12.6

How can I print a '%' character in a printf format string? I tried \%, but it didn't work. 

Simply double the percent sign: %% . 

\% can't work, because the backslash \ is the compiler's escape character, while here our problem
is that the % is printf's escape character. 

See also question 19.17. 

References: K&R1 Sec. 7.3 p. 147 
K&R2 Sec. 7.2 p. 154 
ANSI Sec. 4.9.6.1 
ISO Sec. 7.9.6.1 

Question 12.9

Someone told me it was wrong to use %lf with printf. How can printf use %f for type double, if
scanf requires %lf? 

It's true that printf's %f specifier works with both float and double arguments. Due to the ``default
argument promotions'' (which apply in variable-length argument lists such as printf's, whether or
not prototypes are in scope), values of type float are promoted to double, and printf therefore sees
only doubles. See also questions 12.13 and 15.2. 

References: K&R1 Sec. 7.3 pp. 145-47, Sec. 7.4 pp. 147-50 
K&R2 Sec. 7.2 pp. 153-44, Sec. 7.4 pp. 157-59 
ANSI Sec. 4.9.6.1, Sec. 4.9.6.2 
ISO Sec. 7.9.6.1, Sec. 7.9.6.2 
H&S Sec. 15.8 pp. 357-64, Sec. 15.11 pp. 366-78 
CT&P Sec. A.1 pp. 121-33 

Question 12.10

How can I implement a variable field width with printf? That is, instead of %8d, I want the width
to be specified at run time. 

printf("%*d", width, n) will do just what you want. See also question 12.15. 

References: K&R1 Sec. 7.3 
K&R2 Sec. 7.2 
ANSI Sec. 4.9.6.1 
ISO Sec. 7.9.6.1 
H&S Sec. 15.11.6 
CT&P Sec. A.1 



Question 12.11

How can I print numbers with commas separating the thousands? 
What about currency formatted numbers? 

The routines in <locale.h> begin to provide some support for these operations, but there is no
standard routine for doing either task. (The only thing printf does in response to a custom locale
setting is to change its decimal-point character.) 

References: ANSI Sec. 4.4 
ISO Sec. 7.4 
H&S Sec. 11.6 pp. 301-4 

Question 12.12

Why doesn't the call scanf("%d", i) work? 

The arguments you pass to scanf must always be pointers. To fix the fragment above, change it to
scanf("%d", &i) .

Question 12.13

Why doesn't this code: 
double d;
scanf("%f", &d);
work? 

Unlike printf, scanf uses %lf for values of type double, and %f for float. See also question 12.9. 

Question 12.15

How can I specify a variable width in a scanf format string? 

You can't; an asterisk in a scanf format string means to suppress assignment. You may be able to
use ANSI stringizing and string concatenation to accomplish about the same thing, or to construct
a scanf format string on-the-fly. 

Question 12.17

When I read numbers from the keyboard with scanf "%d\n", it seems to hang until I type one
extra line of input. 

Perhaps surprisingly, \n in a scanf format string does not mean to expect a newline, but rather to
read and discard characters as long as each is a whitespace character. See also question 12.20. 

References: K&R2 Sec. B1.3 pp. 245-6 
ANSI Sec. 4.9.6.2 
ISO Sec. 7.9.6.2 



H&S Sec. 15.8 pp. 357-64 

Question 12.18

I'm reading a number with scanf %d and then a string with gets(), but the compiler seems to be
skipping the call to gets()! 

scanf %d won't consume a trailing newline. If the input number is immediately followed by a
newline, that newline will immediately satisfy the gets(). 

As a general rule, you shouldn't try to interlace calls to scanf with calls to gets() (or any other
input routines); scanf's peculiar treatment of newlines almost always leads to trouble. Either use
scanf to read everything or nothing. 

See also questions 12.20 and 12.23. 

References: ANSI Sec. 4.9.6.2 
ISO Sec. 7.9.6.2 
H&S Sec. 15.8 pp. 357-64 

Question 12.19

I figured I could use scanf more safely if I checked its return value to make sure that the user
typed the numeric values I expect, but sometimes it seems to go into an infinite loop. 

When scanf is attempting to convert numbers, any non-numeric characters it encounters terminate
the conversion and are left on the input stream. Therefore, unless some other steps are taken,
unexpected  non-numeric  input  ``jams''  scanf  again  and  again:  scanf  never  gets  past  the  bad
character(s) to encounter later, valid data. If the user types a character like `x' in response to a
numeric scanf format such as %d or %f, code that simply re-prompts and retries the same scanf
call will immediately reencounter the same `x'. 

See also question 12.20. 

References: ANSI Sec. 4.9.6.2 
ISO Sec. 7.9.6.2 
H&S Sec. 15.8 pp. 357-64 

Question 12.20

Why does everyone say not to use scanf? What should I use instead? 

scanf has a number of problems--see questions 12.17, 12.18, and 12.19. Also, its %s format has
the same problem that gets() has (see question 12.23)--it's hard to guarantee that the receiving
buffer won't overflow. 

More generally, scanf is designed for relatively structured, formatted input (its name is in fact
derived from ``scan formatted''). If you pay attention, it  will  tell you whether it  succeeded or
failed, but it can tell you only approximately where it failed, and not at all how or why. It's nearly
impossible to do decent error recovery with scanf; usually it's far easier to read entire lines (with
fgets or the like), then interpret them, either using sscanf or some other techniques. (Routines like
strtol, strtok, and atoi are often useful; see also question 13.6.) If you do use sscanf, don't forget
to check the return value to make sure that the expected number of items were found. 



References: K&R2 Sec. 7.4 p. 159 

Question 12.21

How can I tell how much destination buffer space I'll need for an arbitrary sprintf call? How can I
avoid overflowing the destination buffer with sprintf? 

There are not (yet) any good answers to either of these excellent questions, and this represents
perhaps the biggest deficiency in the traditional stdio library. 

When the format string being used with sprintf is known and relatively simple, you can usually
predict a buffer size in an ad-hoc way. If the format consists of one or two %s's, you can count the
fixed characters in the format string yourself (or let sizeof count them for you) and add in the
result of calling strlen on the string(s) to be inserted. You can conservatively estimate the size
that %d will expand to with code like: 
#include <limits.h>
char buf[(sizeof(int) * CHAR_BIT + 2) / 3 + 1 + 1];
sprintf(buf, "%d", n);
(This code computes the number of characters required for a base-8 representation of a number; a
base-10 expansion is guaranteed to take as much room or less.) 

When the format string is more complicated, or is not even known until run time, predicting the
buffer size becomes as difficult as reimplementing sprintf, and correspondingly error-prone (and
inadvisable). A last-ditch technique which is sometimes suggested is to use fprintf to print the
same text to a bit bucket or temporary file, and then to look at fprintf's return value or the size of
the file (but see question 19.12). 

If there's any chance that the buffer might not be big enough, you won't want to call sprintf
without  some  guarantee  that  the  buffer  will  not  overflow and overwrite  some  other  part  of
memory.  Several  stdio's  (including  GNU and  4.4bsd)  provide  the  obvious  snprintf  function,
which can be used like this: 
        snprintf(buf, bufsize, "You typed \"%s\"", answer);
and we can hope that a future revision of the ANSI/ISO C Standard will include this function. 

Question 12.23

Why does everyone say not to use gets()? 

Unlike  fgets(),  gets()  cannot  be  told  the  size  of  the  buffer  it's  to  read  into,  so  it  cannot  be
prevented from overflowing that buffer. As a general rule, always use fgets(). See question 7.1 for
a code fragment illustrating the replacement of gets() with fgets(). 

References: Rationale Sec. 4.9.7.2 
H&S Sec. 15.7 p. 356 

Question 12.24

Why does errno contain ENOTTY after a call to printf? 

Many implementations of the stdio package adjust their behavior slightly if stdout is a terminal.
To make the determination, these implementations perform some operation which happens to fail
(with ENOTTY) if stdout is not a terminal. Although the output operation goes on to complete



successfully, errno still  contains ENOTTY. (Note that it is only meaningful for a program to
inspect the contents of errno after an error has been reported.) 

References: ANSI Sec. 4.1.3, Sec. 4.9.10.3 
ISO Sec. 7.1.4, Sec. 7.9.10.3 
CT&P Sec. 5.4 p. 73 
PCS Sec. 14 p. 254 

Question 12.25

What's the difference between fgetpos/fsetpos and ftell/fseek? 
What are fgetpos and fsetpos good for? 

fgetpos and fsetpos use a special typedef, fpos_t, for representing offsets (positions) in a file. The
type behind this typedef, if chosen appropriately, can represent arbitrarily large offsets, allowing
fgetpos and fsetpos to be used with arbitrarily huge files. ftell and fseek, on the other hand, use
long int, and are therefore limited to offsets which can be represented in a long int. See also
question 1.4. 

References: K&R2 Sec. B1.6 p. 248 
ANSI Sec. 4.9.1, Secs. 4.9.9.1,4.9.9.3 
ISO Sec. 7.9.1, Secs. 7.9.9.1,7.9.9.3 
H&S Sec. 15.5 p. 252 

Question 12.26

How can I flush pending input so that a user's typeahead isn't read at the next prompt? Will fflush
(stdin) work? 

fflush is defined only for output streams. Since its definition of ``flush'' is to complete the writing
of buffered characters (not to discard them), discarding unread input would not be an analogous
meaning for fflush on input streams. 

There is no standard way to discard unread characters from a stdio input stream, nor would such a
way be sufficient unread characters can also accumulate in other, OS-level input buffers. 

References: ANSI Sec. 4.9.5.2 
ISO Sec. 7.9.5.2 
H&S Sec. 15.2 

Question 12.30

I'm trying to update a file in place, by using fopen mode "r+", reading a certain string, and writing
back a modified string, but it's not working. 

Be sure to call fseek before you write, both to seek back to the beginning of the string you're
trying to overwrite, and because an fseek or fflush is always required between reading and writing
in the read/write "+" modes. Also, remember that you can only overwrite characters with the
same number of replacement characters; see also question 19.14. 

References: ANSI Sec. 4.9.5.3 
ISO Sec. 7.9.5.3 



Question 12.33

How can I redirect stdin or stdout to a file from within a program? 

Use freopen (but see question 12.34). 

References: ANSI Sec. 4.9.5.4 
ISO Sec. 7.9.5.4 
H&S Sec. 15.2 

Question 12.34

Once I've used freopen, how can I get the original stdout (or stdin) back? 

There isn't a good way. If you need to switch back, the best solution is not to have used freopen in
the first  place. Try using your own explicit  output  (or input) stream variable, which you can
reassign at will, while leaving the original stdout (or stdin) undisturbed. 

Question 12.38

How can I read a binary data file properly? I'm occasionally seeing 0x0a and 0x0d values getting
garbled, and it seems to hit EOF prematurely if the data contains the value 0x1a. 

When you're reading a binary data file, you should specify "rb" mode when calling fopen, to
make sure that text file translations do not occur. Similarly, when writing binary data files, use
"wb". 

Note that the text/binary distinction is made when you open the file: once a file is open, it doesn't
matter which I/O calls you use on it. See also question 20.5. 

References: ANSI Sec. 4.9.5.3 
ISO Sec. 7.9.5.3 
H&S Sec. 15.2.1 p. 348 

Question 13.1

How can I convert numbers to strings (the opposite of atoi)? Is there an itoa function? 

Just use sprintf. (Don't worry that sprintf may be overkill, potentially wasting run time or code
space;  it  works  well  in  practice.)  See  the  examples  in  the  answer  to  question  7.5;  see  also
question 12.21. 

You can obviously use sprintf to convert long or floating-point numbers to strings as well (using
%ld or %f). 

References: K&R1 Sec. 3.6 p. 60 
K&R2 Sec. 3.6 p. 64 

Question 13.2

Why does strncpy not always place a '\0' terminator in the destination string? 



strncpy  was  first  designed  to  handle  a  now-obsolete  data  structure,  the  fixed-length,  not-
necessarily-\0-terminated ``string.'' (A related quirk of strncpy's is that it pads short strings with
multiple \0's, out to the specified length.) strncpy is admittedly a bit cumbersome to use in other
contexts, since you must often append a '\0' to the destination string by hand. You can get around
the problem by using strncat instead of strncpy: if the destination string starts out empty, strncat
does what  you probably wanted strncpy to do.  Another  possibility is  sprintf(dest,  "%.*s",  n,
source) . 

When  arbitrary  bytes  (as  opposed  to  strings)  are  being  copied,  memcpy  is  usually  a  more
appropriate routine to use than strncpy. 

Question 13.5

Why do some versions of toupper act strangely if given an upper-case letter? 
Why does some code call islower before toupper? 

Older versions of toupper and tolower did not always work correctly on arguments which did not
need converting (i.e. on digits or punctuation or letters already of the desired case). In ANSI/ISO
Standard C, these functions are guaranteed to work appropriately on all character arguments. 

References: ANSI Sec. 4.3.2 
ISO Sec. 7.3.2 
H&S Sec. 12.9 pp. 320-1 
PCS p. 182 

Question 13.6

How can I split up a string into whitespace-separated fields? 
How can I duplicate the process by which main() is handed argc and argv? 

The only Standard routine available for this kind of ``tokenizing'' is strtok, although it can be
tricky to  use  and it  may not  do everything you want  it  to.  (For  instance,  it  does not  handle
quoting.) 

References: K&R2 Sec. B3 p. 250 
ANSI Sec. 4.11.5.8 
ISO Sec. 7.11.5.8 
H&S Sec. 13.7 pp. 333-4 
PCS p. 178 

Question 13.7

I need some code to do regular expression and wildcard matching. 

Make sure you recognize the difference between classic regular expressions (variants of which
are used in such Unix utilities as ed and grep), and filename wildcards (variants of which are used
by most operating systems). 

There are a number of packages available for matching regular expressions. Most packages use a
pair of functions, one for ``compiling'' the regular expression, and one for ``executing'' it (i.e.



matching strings against it). Look for header files named <regex.h> or <regexp.h>, and functions
called  regcmp/regex,  regcomp/regexec,  or  re_comp/re_exec.  (These  functions  may exist  in  a
separate regexp library.) A popular, freely-redistributable regexp package by Henry Spencer is
available  from ftp.cs.toronto.edu in pub/regexp.shar.Z or in  several  other archives.  The GNU
project has a package called rx. See also question 18.16. 

Filename wildcard matching (sometimes  called ``globbing'')  is  done  in  a  variety of ways on
different systems. On Unix, wildcards are automatically expanded by the shell before a process is
invoked, so programs rarely have to worry about them explicitly. Under MS-DOS compilers,
there is often a special object file which can be linked in to a program to expand wildcards while
argv is being built. Several systems (including MS-DOS and VMS) provide system services for
listing or opening files specified by wildcards. Check your compiler/library documentation. 

Question 13.8

I'm trying to sort an array of strings with qsort, using strcmp as the comparison function, but it's
not working. 

By ``array of strings'' you probably mean ``array of pointers to char.'' The arguments to qsort's
comparison function are pointers to the objects being sorted, in this case, pointers to pointers to
char. strcmp, however, accepts simple pointers to char. Therefore, strcmp can't be used directly.
Write an intermediate comparison function like this: 
/* compare strings via pointers */
int pstrcmp(const void *p1, const void *p2)
{
        return strcmp(*(char * const *)p1, *(char * const *)p2);
}
The comparison function's arguments are expressed as ``generic pointers,'' const void *. They are
converted back to what they ``really are'' (char **) and dereferenced, yielding char *'s which can
be passed  to  strcmp.  (Under  a  pre-ANSI compiler,  declare  the  pointer  parameters  as  char  *
instead of void *, and drop the consts.) 

(Don't be misled by the discussion in K&R2 Sec. 5.11 pp. 119-20, which is not discussing the
Standard library's qsort). 

References: ANSI Sec. 4.10.5.2 
ISO Sec. 7.10.5.2 
H&S Sec. 20.5 p. 419 

Question 13.9

Now I'm trying to sort an array of structures with qsort. My comparison function takes pointers to
structures, but the compiler complains that the function is of the wrong type for qsort. How can I
cast the function pointer to shut off the warning? 

The  conversions  must  be  in  the  comparison  function,  which  must  be  declared  as  accepting
``generic pointers'' (const void *) as discussed in question 13.8 above. The comparison function
might look like 
int mystructcmp(const void *p1, const void *p2)
{
        const struct mystruct *sp1 = p1;
        const struct mystruct *sp2 = p2;
        /* now compare sp1-&gt;whatever and sp2-&gt; ... */
(The conversions from generic pointers to struct mystruct pointers happen in the initializations



sp1 = p1 and sp2 = p2; the compiler performs the conversions implicitly since p1 and p2 are void
pointers. Explicit casts, and char * pointers, would be required under a pre-ANSI compiler. See
also question 7.7.) 

If, on the other hand, you're sorting pointers to structures, you'll need indirection, as in question
13.8: sp1 = *(struct mystruct **)p1 . 

In general, it is a bad idea to insert casts just to ``shut the compiler up.'' Compiler warnings are
usually trying to tell you something, and unless you really know what you're doing, you ignore or
muzzle them at your peril. See also question 4.9. 

References: ANSI Sec. 4.10.5.2 
ISO Sec. 7.10.5.2 
H&S Sec. 20.5 p. 419 

Question 13.10

How can I sort a linked list? 

Sometimes it's easier to keep the list in order as you build it (or perhaps to use a tree instead).
Algorithms like insertion sort and merge sort lend themselves ideally to use with linked lists. If
you want to use a standard library function, you can allocate a temporary array of pointers, fill it
in with pointers to all your list nodes, call qsort, and finally rebuild the list pointers based on the
sorted array. 

References: Knuth Sec. 5.2.1 pp. 80-102, Sec. 5.2.4 pp. 159-168 
Sedgewick Sec. 8 pp. 98-100, Sec. 12 pp. 163-175 

Question 13.11

How can I sort more data than will fit in memory? 

You want an ``external sort,'' which you can read about in Knuth, Volume 3. The basic idea is to
sort the data in chunks (as much as will fit in memory at one time), write each sorted chunk to a
temporary file, and then merge the files. Your operating system may provide a general-purpose
sort utility, and if so, you can try invoking it from within your program: see questions 19.27 and
19.30. 

References: Knuth Sec. 5.4 pp. 247-378 
Sedgewick Sec. 13 pp. 177-187 

Question 13.12

How can I get the current date or time of day in a C program? 

Just use the time, ctime, and/or localtime functions. (These routines have been around for years,
and are in the ANSI standard.) Here is a simple example: 
#include <stdio.h>
#include <time.h>
main()
{
        time_t now;
        time(&now);



        printf("It's %.24s.\n", ctime(&now));
        return 0;
}
References: K&R2 Sec. B10 pp. 255-7 
ANSI Sec. 4.12 
ISO Sec. 7.12 
H&S Sec. 18 

Question 13.13

I know that the library routine localtime will convert a time_t into a broken-down struct tm, and
that ctime will convert a time_t to a printable string. How can I perform the inverse operations of
converting a struct tm or a string into a time_t? 

ANSI C specifies a library routine, mktime, which converts a struct tm to a time_t. 

Converting a string to a time_t is harder, because of the wide variety of date and time formats
which might be encountered. Some systems provide a strptime function, which is basically the
inverse of strftime. Other popular routines are partime (widely distributed with the RCS package)
and getdate (and a few others, from the C news distribution). See question 18.16. 

References: K&R2 Sec. B10 p. 256 
ANSI Sec. 4.12.2.3 
ISO Sec. 7.12.2.3 
H&S Sec. 18.4 pp. 401-2 

Question 13.14

How can I add n days to a date? How can I find the difference between two dates? 

The  ANSI/ISO  Standard  C  mktime  and  difftime  functions  provide  some  support  for  both
problems. mktime accepts non-normalized dates, so it is straightforward to take a filled-in struct
tm, add or subtract from the tm_mday field, and call mktime to normalize the year, month, and
day fields  (and  incidentally convert  to  a  time_t  value).  difftime  computes  the  difference,  in
seconds, between two time_t values; mktime can be used to compute time_t values for two dates
to be subtracted. 

These  solutions  are  only guaranteed  to  work  correctly for  dates  in  the  range  which  can  be
represented as time_t's. The tm_mday field is an int, so day offsets of more than 32,736 or so may
cause overflow. Note also that at daylight saving time changeovers, local days are not 24 hours
long. 

Another approach to both problems is to use ``Julian day'' numbers. Implementations of Julian
day routines  can be found in the file  JULCAL10.ZIP from the Simtel/Oakland archives (see
question 18.16) and the ``Date conversions'' article mentioned in the References. 

See also questions 13.13, 20.31, and 20.32. 

References: K&R2 Sec. B10 p. 256 
ANSI Secs. 4.12.2.2,4.12.2.3 
ISO Secs. 7.12.2.2,7.12.2.3 
H&S Secs. 18.4,18.5 pp. 401-2 
David Burki, ``Date Conversions'' 



Question 13.15

I need a random number generator. 

The Standard C library has one: rand. The implementation on your system may not be perfect, but
writing a better one isn't necessarily easy, either. 

If you do find yourself needing to implement your own random number generator, there is plenty
of literature out there; see the References. There are also any number of packages on the net: look
for r250, RANLIB, and FSULTRA (see question 18.16). 

References: K&R2 Sec. 2.7 p. 46, Sec. 7.8.7 p. 168 
ANSI Sec. 4.10.2.1 
ISO Sec. 7.10.2.1 
H&S Sec. 17.7 p. 393 
PCS Sec. 11 p. 172 
Knuth Vol. 2 Chap. 3 pp. 1-177 
Park and Miller, ``Random Number Generators: Good Ones are hard to Find'' 

Question 13.16

How can I get random integers in a certain range? 

The obvious way, 
        rand() % N              /* POOR */
(which tries to return numbers from 0 to N-1) is poor, because the low-order bits of many random
number  generators  are  distressingly  non-random.  (See  question  13.18.)  A  better  method  is
something like 
        (int)((double)rand() / ((double)RAND_MAX + 1) * N)
If you're worried about using floating point, you could use 
        rand() / (RAND_MAX / N + 1)
Both methods obviously require knowing RAND_MAX (which ANSI #defines in <stdlib.h>),
and assume that N is much less than RAND_MAX. 

(Note, by the way, that RAND_MAX is a constant telling you what the fixed range of the C
library rand function is. You cannot set RAND_MAX to some other value, and there is no way of
requesting that rand return numbers in some other range.) 

If you're starting with a random number generator which returns floating-point values between 0
and 1, all you have to do to get integers from 0 to N-1 is multiply the output of that generator by
N. 

References: K&R2 Sec. 7.8.7 p. 168 
PCS Sec. 11 p. 172 

Question 13.17

Each time I run my program, I get the same sequence of numbers back from rand(). 

You can call srand to seed the pseudo-random number generator with a truly random initial value.
Popular  seed  values  are  the  time of  day,  or  the  elapsed  time  before  the  user  presses  a  key
(although keypress times are hard to determine portably; see question 19.37). (Note also that it's



rarely useful to call  srand more than once during a run of a program; in particular, don't  try
calling srand before each call to rand, in an attempt to get ``really random'' numbers.) 

References: K&R2 Sec. 7.8.7 p. 168 
ANSI Sec. 4.10.2.2 
ISO Sec. 7.10.2.2 
H&S Sec. 17.7 p. 393 

Question 13.18

I need a random true/false value, so I'm just taking rand() % 2, but it's alternating 0, 1, 0, 1, 0... 

Poor  pseudorandom  number  generators  (such  as  the  ones  unfortunately supplied  with  some
systems) are not very random in the low-order bits. Try using the higher-order bits: see question
13.16. 

References: Knuth Sec. 3.2.1.1 pp. 12-14 

Question 13.20

How can I generate random numbers with a normal or Gaussian distribution? 

Here is one method, by Box and Muller, and recommended by Knuth: 
#include <stdlib.h>
#include <math.h>
double gaussrand()
{
        static double V1, V2, S;
        static int phase = 0;
        double X;
        if(phase == 0) {
                do {
                        double U1 = (double)rand() / RAND_MAX;
                        double U2 = (double)rand() / RAND_MAX;
                        V1 = 2 * U1 - 1;
                        V2 = 2 * U2 - 1;
                        S = V1 * V1 + V2 * V2;
                        } while(S >= 1 || S == 0);
                X = V1 * sqrt(-2 * log(S) / S);
        } else
                X = V2 * sqrt(-2 * log(S) / S);
        phase = 1 - phase;
        return X;
}
See the extended versions of this list (see question 20.40) for other ideas. 

References: Knuth Sec. 3.4.1 p. 117 
Box and Muller, ``A Note on the Generation of Random Normal Deviates'' 
Press et al., Numerical Recipes in C Sec. 7.2 pp. 288-290 



Question 13.24

I'm trying to port this old program. Why do I get ``undefined external'' errors for some library
functions? 

Some old or semistandard functions have been renamed or replaced over the years; 
if you need:/you should instead: 

index 
use strchr. 

rindex 
use strrchr. 

bcopy 
use memmove, after interchanging the first and second arguments (see also question 11.25).

bcmp 
use memcmp. 

bzero 
use memset, with a second argument of 0. 

Contrariwise,  if  you're  using  an  older  system which  is  missing  the  functions  in  the  second
column, you may be able to implement them in terms of, or substitute, the functions in the first. 

References: PCS Sec. 11 

Question 13.25

I keep getting errors due to library functions being undefined, but I'm #including all the right
header files. 

In some cases (especially if the functions are nonstandard) you may have to explicitly ask for the
correct libraries to be searched when you link the program. See also questions 11.30, 13.26, and
14.3. 

Question 13.26

I'm still  getting  errors  due  to  library functions  being  undefined,  even  though  I'm explicitly
requesting the right libraries while linking. 

Many linkers make one pass over the list of object files and libraries you specify, and extract
from  libraries  only  those  modules  which  satisfy  references  which  have  so  far  come  up  as
undefined. Therefore, the order in which libraries are listed with respect to object files (and each
other) is significant; usually, you want to search the libraries last. (For example, under Unix, put
any -l options towards the end of the command line.) See also question 13.28. 

Question 13.28

What does it mean when the linker says that _end is undefined? 

That message is a quirk of the old Unix linkers. You get an error about _end being undefined
only when other things are undefined, too--fix the others, and the error about _end will disappear.
(See also questions 13.25 and 13.26.) 



Question 14.1

When I set a float variable to, say, 3.1, why is printf printing it as 3.0999999? 

Most computers use base 2 for floating-point numbers as well as for integers. In base 2, 1/1010
(that  is,  1/10  decimal)  is  an  infinitely-repeating  fraction:  its  binary  representation  is
0.0001100110011...  .  Depending on how carefully your compiler's  binary/decimal  conversion
routines  (such  as  those  used  by printf)  have  been  written,  you may see  discrepancies  when
numbers (especially low-precision floats) not exactly representable in base 2 are assigned or read
in and then printed (i.e. converted from base 10 to base 2 and back again). See also question 14.6.

Question 14.2

I'm trying to take some square roots, but I'm getting crazy numbers. 

Make sure that you have #included <math.h>, and correctly declared other functions returning
double. (Another library routine to be careful with is atof, which is declared in <stdlib.h>.) See
also question 14.3. 

References: CT&P Sec. 4.5 pp. 65-6 

Question 14.3

I'm trying to do some simple trig, and I am #including <math.h>, but I keep getting ``undefined:
sin'' compilation errors. 

Make sure you're actually linking with the math library. For instance, under Unix, you usually
need to use the -lm option, at the end of the command line, when compiling/linking. See also
questions 13.25 and 13.26. 

Question 14.4

My floating-point calculations are acting strangely and giving me different answers on different
machines. 

First, see question 14.2. 

If the problem isn't that simple, recall that digital computers usually use floating-point formats
which provide a close but by no means exact simulation of real number arithmetic. Underflow,
cumulative precision loss, and other anomalies are often troublesome. 

Don't assume that floating-point results will be exact, and especially don't assume that floating-
point values can be compared for equality. (Don't throw haphazard ``fuzz factors'' in, either; see
question 14.5.) 

These problems are no worse for C than they are for  any other  computer  language.  Certain
aspects of floating-point  are usually defined as ``however the processor does them'' (see also
question 11.34), otherwise a compiler for a machine without the ``right'' model would have to do
prohibitively expensive emulations. 

This article cannot begin to list  the pitfalls associated with, and workarounds appropriate for,



floating-point work. A good numerical programming text should cover the basics; see also the
references below. 

References: Kernighan and Plauger, The Elements of Programming Style Sec. 6 pp. 115-8 
Knuth, Volume 2 chapter 4 
David  Goldberg,  ``What  Every  Computer  Scientist  Should  Know  about  Floating-Point
Arithmetic'' 

Question 14.5

What's a good way to check for ``close enough'' floating-point equality? 

Since the absolute accuracy of floating point values varies, by definition, with their magnitude,
the best way of comparing two floating point values is to use an accuracy threshold which is
relative to the magnitude of the numbers being compared. Rather than 
        double a, b;
        ...
        if(a == b)      /* WRONG */
use something like 
        #include <math.h>
        if(fabs(a - b) <= epsilon * fabs(a))
for some suitably-chosen epsilon. 

References: Knuth Sec. 4.2.2 pp. 217-8 

Question 14.6

How do I round numbers? 

The simplest and most straightforward way is with code like 
(int)(x + 0.5)
This technique won't work properly for negative numbers, though. 

Question 14.7

Why doesn't C have an exponentiation operator? 

Because few processors have an exponentiation instruction. C has a pow function, declared in
<math.h>, although explicit multiplication is often better for small positive integral exponents. 

References: ANSI Sec. 4.5.5.1 
ISO Sec. 7.5.5.1 
H&S Sec. 17.6 p. 393 

Question 14.8

The pre-#defined constant M_PI seems to be missing from my machine's copy of <math.h>. 

That constant (which is  apparently supposed to be the value of pi,  accurate to  the machine's
precision), is not standard. If you need pi, you'll have to #define it yourself. 



References: PCS Sec. 13 p. 237 

Question 14.9

How do I test for IEEE NaN and other special values? 

Many systems  with  high-quality  IEEE floating-point  implementations  provide  facilities  (e.g.
predefined constants, and functions like isnan(), either as nonstandard extensions in <math.h> or
perhaps in <ieee.h> or <nan.h>) to deal with these values cleanly, and work is being done to
formally standardize such facilities. A crude but usually effective test for NaN is exemplified by 
        #define isnan(x) ((x) != (x))
although non-IEEE-aware compilers may optimize the test away. 

Another possibility is to format the value in question using sprintf: on many systems it generates
strings like "NaN" and "Inf" which you could compare for in a pinch. 

See also question 19.39. 

Question 14.11

What's a good way to implement complex numbers in C? 

It is straightforward to define a simple structure and some arithmetic functions to manipulate
them. See also questions 2.7, 2.10, and 14.12. 

Question 14.12

I'm looking for some code to do: 

Fast Fourier Transforms (FFT's) 
matrix arithmetic (multiplication, inversion, etc.) 
complex arithmetic 

Ajay Shah maintains an index of free numerical software; it is posted periodically, and available
where this FAQ list is archived (see question 20.40). See also question 18.16. 

Question 14.13

I'm having trouble with a Turbo C program which crashes and says something like ``floating
point formats not linked.'' 

Some  compilers  for  small  machines,  including  Borland's  (and  Ritchie's  original  PDP-11
compiler),  leave  out  certain  floating  point  support  if  it  looks  like  it  will  not  be  needed.  In
particular, the non-floating-point versions of printf and scanf save space by not including code to
handle %e, %f, and %g. It happens that Borland's heuristics for determining whether the program
uses floating point are insufficient, and the programmer must sometimes insert an extra, explicit
call  to  a  floating-point  library  routine  to  force  loading  of  floating-point  support.  (See  the
comp.os.msdos.programmer FAQ list for more information.) 



Question 15.1

I heard that you have to #include <stdio.h> before calling printf. Why? 

So that a proper prototype for printf will be in scope. 

A  compiler  may use  a  different  calling  sequence  for  functions  which  accept  variable-length
argument lists. (It might do so if calls using variable-length argument lists were less efficient than
those using fixed-length.) Therefore, a prototype (indicating, using the ellipsis notation ``...'', that
the argument list is of variable length) must be in scope whenever a varargs function is called, so
that the compiler knows to use the varargs calling mechanism. 

References: ANSI Sec. 3.3.2.2, Sec. 4.1.6 
ISO Sec. 6.3.2.2, Sec. 7.1.7 
Rationale Sec. 3.3.2.2, Sec. 4.1.6 
H&S Sec. 9.2.4 pp. 268-9, Sec. 9.6 pp. 275-6 

Question 15.2

How can %f be used for both float and double arguments in printf? Aren't they different types? 

In the variable-length part of a variable-length argument list, the ``default argument promotions''
apply: types char and short int are promoted to int, and float is promoted to double. (These are the
same promotions that apply to function calls without a prototype in scope, also known as ``old
style''  function  calls;  see question  11.3.)  Therefore,  printf's  %f format  always sees  a  double.
(Similarly, %c always sees an int, as does %hd.) See also questions 12.9 and 12.13. 

References: ANSI Sec. 3.3.2.2 
ISO Sec. 6.3.2.2 
H&S Sec. 6.3.5 p. 177, Sec. 9.4 pp. 272-3 

Question 15.3

I had a frustrating problem which turned out to be caused by the line 
        printf("%d", n);
where n was actually a long int. I thought that ANSI function prototypes were supposed to guard
against argument type mismatches like this. 

When a function accepts a variable number of arguments, its prototype does not (and cannot)
provide any information about the number and types of those variable arguments. Therefore, the
usual protections do not apply in the variable-length part of variable-length argument lists: the
compiler cannot perform implicit conversions or (in general) warn about mismatches. 

See also questions 5.2, 11.3, 12.9, and 15.2. 

Question 15.4

How can I write a function that takes a variable number of arguments? 

Use the facilities of the <stdarg.h> header. 



Here is a function which concatenates an arbitrary number of strings into malloc'ed memory: 
#include <stdlib.h>             /* for malloc, NULL, size_t */
#include <stdarg.h>             /* for va_ stuff */
#include <string.h>             /* for strcat et al. */
char *vstrcat(char *first, ...)
{
        size_t len;
        char *retbuf;
        va_list argp;
        char *p;
        if(first == NULL)
                return NULL;
        len = strlen(first);
        va_start(argp, first);
        while((p = va_arg(argp, char *)) != NULL)
                len += strlen(p);
        va_end(argp);
        retbuf = malloc(len + 1);       /* +1 for trailing \0 */
        if(retbuf == NULL)
                return NULL;            /* error */
        (void)strcpy(retbuf, first);
        va_start(argp, first);          /* restart for second scan */
        while((p = va_arg(argp, char *)) != NULL)
                (void)strcat(retbuf, p);
        va_end(argp);
        return retbuf;
}
Usage is something like 
        char *str = vstrcat("Hello, ", "world!", (char *)NULL);
Note the cast on the last argument; see questions 5.2 and 15.3. (Also note that the caller must free
the returned, malloc'ed storage.) 

See also question 15.7. 

References: K&R2 Sec. 7.3 p. 155, Sec. B7 p. 254 
ANSI Sec. 4.8 
ISO Sec. 7.8 
Rationale Sec. 4.8 
H&S Sec. 11.4 pp. 296-9 
CT&P Sec. A.3 pp. 139-141 
PCS Sec. 11 pp. 184-5, Sec. 13 p. 242 

Question 15.5

How can I write a function that takes a format string and a variable number of arguments, like
printf, and passes them to printf to do most of the work? 

Use vprintf, vfprintf, or vsprintf. 



Here is  an error routine which prints  an error message,  preceded by the string ``error:  ''  and
terminated with a newline: 
#include <stdio.h>
#include <stdarg.h>
void error(char *fmt, ...)
{
        va_list argp;
        fprintf(stderr, "error: ");
        va_start(argp, fmt);
        vfprintf(stderr, fmt, argp);
        va_end(argp);
        fprintf(stderr, "\n");
}
See also question 15.7. 

References: K&R2 Sec. 8.3 p. 174, Sec. B1.2 p. 245 
ANSI Secs. 4.9.6.7,4.9.6.8,4.9.6.9 
ISO Secs. 7.9.6.7,7.9.6.8,7.9.6.9 
H&S Sec. 15.12 pp. 379-80 
PCS Sec. 11 pp. 186-7 

Question 15.6

How can I write a function analogous to scanf, that calls scanf to do most of the work? 

Unfortunately, vscanf and the like are not standard. You're on your own

Question 15.7

I have a pre-ANSI compiler, without <stdarg.h>. What can I do? 

There's an older header, <varargs.h>, which offers about the same functionality. 

References: H&S Sec. 11.4 pp. 296-9 
CT&P Sec. A.2 pp. 134-139 
PCS Sec. 11 pp. 184-5, Sec. 13 p. 250 

Question 15.8

How can I discover how many arguments a function was actually called with? 

This  information  is  not  available  to  a  portable  program.  Some  old  systems  provided  a
nonstandard nargs function, but its use was always questionable, since it typically returned the
number of words passed, not the number of arguments. (Structures, long ints, and floating point
values are usually passed as several words.) 

Any function which takes a variable number of arguments must be able to determine from the
arguments themselves how many of them there are. printf-like functions do this by looking for
formatting specifiers (%d and the like) in the format string (which is why these functions fail
badly  if  the  format  string  does  not  match  the  argument  list).  Another  common  technique,
applicable when the arguments are all of the same type, is to use a sentinel value (often 0, -1, or
an appropriately-cast null pointer) at the end of the list (see the execl and vstrcat examples in
questions 5.2 and 15.4). Finally, if their types are predictable, you can pass an explicit count of



the number of variable arguments (although it's usually a nuisance for the caller to generate). 

References: PCS Sec. 11 pp. 167-8 

Question 15.9

My compiler isn't letting me declare a function 
        int f(...)
        {
        }
i.e. with no fixed arguments. 

Standard C requires at least one fixed argument, in part so that you can hand it to va_start. 

References: ANSI Sec. 3.5.4, Sec. 3.5.4.3, Sec. 4.8.1.1 
ISO Sec. 6.5.4, Sec. 6.5.4.3, Sec. 7.8.1.1 
H&S Sec. 9.2 p. 263 

Question 15.10

I have a varargs function which accepts a float parameter. Why isn't 
va_arg(argp, float)
working? 

In  the  variable-length  part  of  variable-length  argument  lists,  the  old  ``default  argument
promotions'' apply: arguments of type float are always promoted (widened) to type double, and
types char and short int are promoted to int. Therefore, it is never correct to invoke va_arg(argp,
float); instead you should always use va_arg(argp, double). Similarly, use va_arg(argp, int) to
retrieve arguments which were originally char, short, or int. See also questions 11.3 and 15.2. 

References: ANSI Sec. 3.3.2.2 
ISO Sec. 6.3.2.2 
Rationale Sec. 4.8.1.2 
H&S Sec. 11.4 p. 297 

Question 15.11

I can't get va_arg to pull in an argument of type pointer-to-function. 

The  type-rewriting  games  which  the  va_arg  macro  typically  plays  are  stymied  by  overly-
complicated types such as pointer-to-function. If you use a typedef for the function pointer type,
however, all will be well. See also question 1.21. 

References: ANSI Sec. 4.8.1.2 
ISO Sec. 7.8.1.2 
Rationale Sec. 4.8.1.2 

Question 15.12

How can I write a function which takes a variable number of arguments and passes them to some
other function (which takes a variable number of arguments)? 



In general, you cannot. Ideally, you should provide a version of that other function which accepts
a va_list  pointer (analogous to vfprintf;  see question 15.5).  If the arguments must  be passed
directly as actual arguments, or if you do not have the option of rewriting the second function to
accept a va_list (in other words, if the second, called function must accept a variable number of
arguments, not a va_list), no portable solution is possible. (The problem could perhaps be solved
by resorting to machine-specific assembly language; see also question 15.13.) 

Question 15.13

How can I call a function with an argument list built up at run time? 

There is no guaranteed or portable way to do this. If you're curious, however, this list's editor has
a few wacky ideas you could try... 

Instead of  an actual  argument  list,  you might  consider  passing an  array of  generic  (void  *)
pointers.  The  called  function  can  then  step  through  the  array,  much  like  main()  might  step
through argv. (Obviously this works only if you have control over all the called functions.) 

(See also question 19.36.) 


